
 Towards Power Management for FreeBSD

Robin Randhawa

robin.randhawa@arm.com

FreeBSD Developer Summit

Computer Laboratory

University of Cambridge

August 2015

Agenda

•  An overview of Energy Aware Scheduling (EAS) for Linux

•  Discussion on possibilities for FreeBSD

Motivations for EAS
Hardware topologies are becoming more varied, accommodating different power/
performance budgets

•  SMP, multi-cluster SMP, ARM big.LITTLE technology

•  Per core/per cluster DVFS (Dynamic Voltage & Frequency Scaling)

Linux power management frameworks are uncoordinated and hard to tune for
different topologies

•  cpufreq vs cpuidle vs scheduler

The Task Scheduler is best placed to orchestrate power-performance control

Scheduling policy decides task placement

•  Affects performance and energy
consumption

Mainline Linux policy is ‘work preserving’

•  Only cares about maximizing throughput

•  DVFS and idle-states controlled by
independent policy governors.

Designed for SMP, not energy-aware

Conventional Scheduling

Capacity Utilization

0 1 2 3

Max capacity

Waking task

?

CPU

cluster 0 1

Current
capacity

Energy-Aware Scheduling (EAS) policy

•  Pick CPU with sufficient spare capacity and
smallest energy impact

Requirements

•  Tracking of task utilization

•  Platform energy model

Supports all topologies

•  SMP

•  big.LITTLE

•  Async DVFS

Energy Aware Scheduling

Capacity Utilization

0 1 2 3

Max capacity
big

Waking task

?

CPU

cluster little big

Current
capacity

Max capacity
little

Scale invariant load

Running

t0
t

utilization

@y MHz

Running

t0
t

utilization

@0.5y MHz Area doubled

Utilization
doubled

Throughput

t0
t

utilization

@y MHz

Throughput

t0
t

utilization

@0.5y MHz ~Same area

~Same
utilization

No invariance Scale-invariant utilization

Component energy model
Tabular cost data for all power and frequency domains in the system

Core 0 Core 1

Cluster (L2, SCU, …)

G G

G

V

G G

C

Core 2 Core 3

Cluster (L2, SCU, …)

G G

G

V

G G

C

G

G

C

V Voltage regulator

Power Gate

Power Domain

Clock Source

Clock Gate

Energy model data

P-States (frequencies)

Compute capacity Busy power

Performance score
normalised to the highest
P-state of the fastest CPU

in the system (1024)

Normalised power score
(W)

C-States (Idle states)

Idle power (normalised)

Normalised power score
(W)

Compute capacity
(Performance)

Little
core

Big core

Power

 Estimating the energy impact

Capacity Utilization

0 1 2 3

Max capacity
big

Waking task

?

CPU

cluster little big

Current
capacity

Max capacity
little

Compute capacity
(Performance)

Placing task on cpu1:
P-state change for
CPU0 and CPU1.

Placing task on CPU3:
No P-state changes.

CPU 0, 1

CPU 2, 3

Little core

Big core

Power

Idle state awareness
•  Integration of cpuidle with the scheduler

improves task placement on idle CPUs

•  Scheduler picks CPU in shallowest idle-
state (cheapest from a power and
performance standpoint)

Capacity Utilization

0 1 2 3

Max capacity

Waking task

?

CPU

cluster 0 1

Current
capacity

Conventional DVFS
•  Sampling based governors are slow to

respond and hard to tune

•  Sampling too fast: OPP* changes for
small utilization spikes

•  Sampling too slow: Sudden burst of
utilization might not get the necessary
OPP change in time.

*OPP: Operating performance point (Voltage, frequency) tuple

cpu
utilization

cpu
utilization

cpufreq governor
sampling

React!

Time

20% 20% 20%

0% 30% 100%

Time

Average too low, no response.

Scheduler driven DVFS
•  With scheduler task utilization tracking

DVFS can be notified immediately when
CPU utilization changes

•  Improved responsiveness.

Cpu
 utilization

Time

Now Next sample

Capacity

Capacity Utilization

0 1 2 3

Max capacity
big

Waking task

?

CPU

cluster little big

Current
capacity

Max capacity
little

Centralised tunability
•  Current: A set of governor-specific

tunables.

•  Goal: Single tunable to bias the energy/
performance trade-off.

Prototypes

Global boost tunable:
/proc/sys/kernel/sched_cfs_boost

Task group (cgroup) based tuning:
/sys/fs/cgroup/stune/<group>/
schedtune.boost

cpu
utilization

Time

Capacity

Performance
margin

EAS related tools/utilities

rt-app – synthetic workload generator for Linux
https://github.com/scheduler-tools/rt-app

ARM “Workload Automation” – runs Android/ChromeOS tests
https://github.com/ARM-software/workload-automation

Kernelshark – trace analysis

 https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git

Improved analysis tools (experimental)

 TRAPpy: Trace Analysis and Plotting in Python

 BART: Behaviour Analysis and Regression Toolkit

 https://github.com/ARM-software

Where do we go from here ?

Incremental steps

Abstract task load scale

Settle on a suitable platform

Simple DVFS support

Simple cpuidle support

Device tie-in

Justin Hibbit’s clock control

Abstract capacity scale for
processing elements

Modular load calc
runqueue residency time

micro-arch hints

Modular policy

I/O subsystem driven constraint
specification for CPU power
management

Basic

Good documentation for power-
perf machinery

Tooling

Measurement capability
DAQs etc

Has to be CPU subsystem specific

Scheduling visualisation

DVFS and Idle visualisation

SMP

big.LITTLE

Energy model build flows

Driven from the scheduler

Scheduler aware

Task wakeup

Advanced

Thermal

Centralised tunability

At one end: Energy efficient
operation at best possible
throughput

At the other end: Outright
performance at the intentional
expense of energy

PE topology expression

Energy model expression Modular architecture

Energy model driven

Thermal sense driven constraint
specification for task scheduling
and CPU power management

(Very) early thoughts on incremental steps for FreeBSD

End

