
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Cookie map:
an alternative mmap() API

Brooks Davis

BSDCam 2017

mmap() usage

•  Create stacks

•  Allocate heap for malloc()

•  Map files (i.e. install, cp)

•  Map libraries (multiple mappings in a region)

•  Create mini-address-space (bhyve, libcheri)

•  Manage regions for JIT

2

The mmap() family

•  mprotect() – set permissions

•  madvise() – alter paging strategy

•  msync() – write modified pages to backing store

•  minherit() – behavior of mapping across fork()

•  mincore() – get status of pages

3

What’s wrong with mmap()?

•  Encourages explicit virtual address management

•  Can replace any page, even the wrong one

•  Permissions model doesn’t fit W^X

•  On OpenBSD most pages can be made executable
later

•  No way to support pointer permissions with JIT

•  Must return exactly the number of pages requested

•  No rounding up for super pages, etc

4

Design goals

•  Allow regions to be reserved

•  Allow allocations to be rounded up

•  Permit, but discourage explicit address management

•  Make changes to part of a reservation easy

•  Support introspection without compromising ASLR

•  Support immutability and non-reuse

•  Allow multiple pointers (with different permissions)
to be returned for a region (CHERI)

5

API sketch 1/2

•  int cmmap(vaddr_t hint, size_t len, int prot, int
flags, int fd, off_t offset, cm_t *cookiep)

•  Reserve a region and return a cookie.

•  int cmgetptr(cm_t cookie, void **ptrp)

•  Get a pointer to the region.

•  int csubmap(cm_t cookie, size_t mem_offset,
size_t len, int prot, int flags, int fd, off_t offset)

•  Replace part (all) pages in a region

6

API sketch 2/2
•  int cmclose(cm_t cookie, int flags)

•  Close a cookie optionally unmapping

•  int cmrestrict(cm_t cookie, XX ops, XX *oops)

•  Restrict the set of operations on a cookie

•  int cmstat(cm_t cookie, size_t index, struct cm_stat *
cs)

•  Return data on a series of submaps

•  cmadvise(), cmincore(), cminherit(), cmsync(),
cmunmap()

•  Like mmap() counterparts, but within region
7

API Sketch (CHERI extensions)

•  int cmgetcap(cm_t cookie, void **ptrp, perm_t
perms)

•  Get a capabiltiy pointer with the requested
permissions

•  int cmandperm(cm_t cookie, perm_t perms,
perm_t *operms)

•  Update the set of allowed permission for new
capabilities

8

Alternative cmmap()/cmsubmap() API

struct cmreq cmr;

cm_t cmp;

void *ptr;

CMREQ_INIT(&cmr, len, prot); // Anon memory

CMREQ_SETFD(&cmr, fd); // Map a file at offset 0

CMREQ_SETFILEOFFET(&cmr, off); // Map file off

CMREQ_SETMAPOFFSET(&cmt, 4096); // Map at 4k offset

CMREQ_SETSHARED(&cmr); // Map shared

cmmap(&cmr, &cmp);

cmgetptr(&cmr, &ptr);

9

Feedback requested

•  Does this meet your needs?

•  Does it seem sane?

•  Is a request struct too un-UNIX-like?

10

