

Tracing in virtualized environments

Lucian Carata, Domagoj Stolfa

Which tracing?

- Dynamic tracing tools such as DTrace
- Tools that continuously provide information about the underlying system with low overhead

- What doesn't apply
 - Debuggers
 - Intercepting and high overhead tools (truss, strace)
 - Post-mortem tools (ktrace)

- The hypervisor yet another layer of resource multiplexing
 - vCPUs, physical to machine memory mapping
- Problematic reading of hardware MSRs, PMU data
 - In the presence of save/restore and migration
- Complexity of overlayed stacks (2 schedulers, 2 TCP stacks, 2 I/O stacks...)

 The hypervisor - yet another layer of resource multiplexing

 The hypervisor - yet another layer of resource multiplexing

Activity multiplexing (event loops)

Application

 The hypervisor - yet another layer of resource multiplexing

Activity multiplexing (event loops)

 The hypervisor - yet another layer of resource multiplexing

Activity multiplexing (event loops)

Application multiplexing (time, mem, I/O)

OS

OS multiplexing (time, mem, I/O)

- Problematic reading of hardware MSRs, PMU data
 - In the presence of save/restore and migration

- Problematic reading of hardware MSRs, PMU data
 - In the presence of save/restore and migration
- Time (tsc)

```
constant_tsc + nonstop_tsc = invariant TSC
```

- Defaults in hypervisors:
 - slow but always correct
 - fast but sometimes wrong

- Problematic reading of hardware MSRs, PMU data
 - In the presence of save/restore and migration
- Time (tsc)

- Defaults in hypervisors:
 - slow but always correct
 - fast but sometimes wrong

- Problematic reading of hardware MSRs, PMU data
 - In the presence of save/restore and migration
- Time (tsc)

- Defaults in hypervisors:
 - slow but always correct
 - fast but sometimes wrong

Option: paravirtualized rdtscp

 Complexity of overlayed stacks (2 schedulers, 2 TCP stacks, 2 I/O stacks...)

Complexity of overlayed stacks (2 schedulers, 2 TCP stacks, 2 I/O stacks...)

If you measure anything that is faster in the VM than on bare metal....

 Complexity of overlayed stacks (2 schedulers, 2 TCP stacks, 2 I/O stacks...)

- If you measure anything that is faster in the VM than on bare metal....
- You're likely not measuring all of it

DTrace-virt

- What it is
 - Currently utilizes bhyve exclusively
 - Currently DTrace only.
 - Provides global execution state across guests.
 - Synchronous.
- What it is not.
 - A replacement for debugging tools.
 - A way to inspect compromised guests.

DTrace-virt

Possible applications

- Monitoring tools.
- Debugging virtualized systems.
- Malware analysis.
- Understanding how virtualized applications work and what the implications of virtualization are.

DTrace-virt

Benefits

- Given the execution state, conditionally do various things through DTrace.
- Implied time ordering of events due to synchronous behaviour.
- Inspection of state across guest machines.
- Pitfalls.
 - Requires large changes to DTrace.
 - Requires a synchronous trapping mechanism.
 - Potentially high overhead.

Discussion

- Harder problems:
 - Security model for tracing multiple guests
 - Malicious guests
 - What measurements need guest/hypervisor coordination?
 - Generalization of the approach to multiple types of systems (hypervisors, processes, kernels, ...)
 - Solutions that are applicable to distributed systems?