
2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory and
the NVM Programming Model

Andy Rudoff
Data Center Software

Intel Corporation
andy.rudoff@intel.com

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Questions

r  Why now?
r Basic programming model is decades old!

r  What changes?
r Incremental changes vs major disruptions

r  What does this mean to FreeBSD?
r Proposed changes and open questions

2

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Questions

r  Why now?
r Basic programming model is decades old!

r  What changes?
r Incremental changes vs major disruptions

r  What does this mean to FreeBSD?
r Proposed changes and open questions

3

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Two Movements Afoot

r  Why now?
r Basic programming model is decades old!

4

Block Mode Innovations

•  Atomics
•  Access hints
•  NVM-oriented operations

Emerging NVM Technologies

• Performance
• Performance
• Perf… okay, Cost

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

* Storage Networking Industry Association: www.snia.org

•  Members
r EMC, Fujitsu, Fusion-io, HP, HGST, Inphi, Intel,

Intuitive Cognition Consulting, LSI, Microsoft, NetApp,
PMC-Sierra, Qlogic, Red Hat, Samsung, Seagate,
Sony, Symantec, Viking, Virident, VMware

r Calypso Systems, Cisco, Contour Asset
Management, Dell, FalconStor, Hitachi, Huawei, IBM,
IDT, Marvell, Micron, NEC, OCZ, Oracle, SanDisk,
Tata Consultancy Services, Toshiba

SNIA* NVM Programming TWG

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Questions

r  Why now?
r Basic programming model is decades old!

r  What changes?
r Incremental changes vs major disruptions

r  What does this mean to FreeBSD?
r Proposed changes and open questions

6

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Next Generation Scalable NVM

Family Defining Switching
Characteristics

Phase Change
Memory

Energy (heat) converts material
between crystalline (conductive) and
amorphous (resistive) phases

Magnetic Tunnel
Junction (MTJ)

Switching of magnetic resistive
layer by spin-polarized electrons

Electrochemical Cells
(ECM)

Formation / dissolution of
“nano-bridge” by electrochemistry

Binary Oxide
Filament Cells

Reversible filament formation by
Oxidation-Reduction

Interfacial
Switching

Oxygen vacancy drift diffusion induced
barrier modulation

Scalable Resistive Memory Element

Resistive RAM NVM Options

Cross Point Array in Backend Layers ~4l2 Cell

Wordlines Memory
Element

Selector
Device

Many candidate next generation NVM technologies.
Offer ~ 1000x speed-up over NAND, closer to DRAM

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Exploiting Next Generation NVM

r  With Next Generation NVM, the NVM is no longer the bottleneck
r  Need optimized platform storage interconnect
r  Need optimized software storage access methods

*

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Exploiting Next Generation NVM

r  With Next Generation NVM, the NVM is no longer the bottleneck
r  Need optimized platform storage interconnect
r  Need optimized software storage access methods

*

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory

10

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory Definition

r  Byte-addressable
r As far as the programmer is concerned

r  Load/Store access
r Not demand-paged

r  Memory-like performance
r Would reasonably stall a CPU load waiting for PM

r  Probably DMA-able
r  Including RDMA

r  For modeling, think: Battery-backed DRAM

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

PMem in This Presentation…

r  Is not tablet-like memory for entire system
r  “Transparent Persistent Memory” is another topic

r  Is not NAND Flash
r At least not directly

r perhaps with aggressive caching

r  Is not block-oriented

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory Attributes

r  PM does not
r  Surprise the program with unexpected latencies

r  No major page faults

r  Kick other things out of memory
r  Use the page cache unexpectedly

r  PM stores aren’t durable until data is flushed
r  Is this a new, inconvenient attribute of PM?
r  Or is this something that’s been around for decades?

r  PM may not always stay at the same address
r  Physically
r  Virtually

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Types of Persistent Memory

r  Battery-backed DRAM
r Practical or not, a good model for software design

r  DRAM saved on power failure
r DRAM speeds at run-time
r Expense = DRAM + additional logic

r  NVM with significant caching
r Reliance on cache means assumptions on workloads

r  Next generation NVM
r Bit and pieces of information available
r Still quite a bit unknown/emerging here

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Existing Memory use cases

15

Volatile System memory
•  DRAM DIMMs
•  High Throughput, High Cost

SSD Caching
•  DB in HDD/SAN cached by SSD/DRAM

NVDIMM
•  Raid Cache
•  Persistent RamDisk
•  Checkpointing

NVM used as Memory
•  Extended App Virtual Memory
•  Auto Commit Mem (persistent)

Copy to Flash
•  Sections of DRAM used for Persistent

Write Back Cache (WBC)
•  Transfer WBC to Flash (power loss)

+

UPS

 Typical Use Case Volatile

 Emerging Use Case Persistent

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

The Value of Persistent Memory

r  Data sets addressable with no DRAM footprint
r At least, up to application if data copied to DRAM

r  Typically DMA (and RDMA) to PM works as expected
r RDMA directly to persistence – no buffer copy required!

r  The “Warm Cache” effect
r No time spend loading up memory

r  Byte addressable
r  Direct user-mode access

r No kernel code in data path

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Two Persistent Memory
Programming Models

(two so far…)

17

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

NVM.PM.VOLUME

•  NVM Volumes
– PM Capable
– A list of physical ranges

of NVM

•  Operations
– GET_RANGESET
– …

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Who Uses NVM.PM.VOLUME?

r  Kernel modules
r  File systems

r  Maybe to expose PM
r  Maybe just to use it internally

r  Memory management
r  Example: Multi-tiered page cache

r  Other storage stack components
r  RAID
r  Caches
r  Clustered I/O

r  Future NVM Programming models we haven’t thought of yet

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

NVM.PM.FILE

•  NVM Files
– PM Capable
– Native file APIs and

management

•  Operations
– Native open/close read/

write
– NVM.PM.FILE.MAP
– …

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Application Memory Allocation

User
Space

Kernel
Space

 Application

RAM

•  Well-worn interface, around for decades
•  Memory is gone when application exits

– Or machine goes down

RAM

RAM RAM

Memory
Management

ptr = malloc(len)

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Application NVM Allocation

User
Space

Kernel
Space

 Application

NVM

•  Simple, familiar interface, but then what?
– Persistent, so apps want to “attach” to regions
– Need to manage permissions for regions
– Need to resize, remove, …, backup the data

NVM

NVM NVM

Memory
Management

ptr = pm_malloc(len)

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Who Uses NVM.PM.FILE?

r  Applications
r Persistent data sets, requiring addressability without

impacting DRAM footprint
r Persistent caches

r  Usages that must reconnect with blobs of persistence
r Naming
r Permissions

r  Potentially kernel modules requiring some of the above
features

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Questions

r  Why now?
r Basic programming model is decades old!

r  What changes?
r Incremental changes vs major disruptions

r  What does this mean to FreeBSD?
r Proposed changes and open questions

24

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory

User
Space

Kernel
Space

Standard
File API

NVDIMM Driver

Application

File System

 Application

Load/
Store

Standard
File API

PM-Aware
File System

MMU
Mapp
ings

The Kernel Components

New Components

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Memory-Mapped Data Structures

r  Obtain memory-mapped access with mmap()
r  Facility has been around for decades

r  In pretty much all modern operating systems
r  Typically demand-paged

r UNIX also uses it for hardware access (e.g., graphics)
r  Usually two types:

r Shared
r Copy-on-write (“Private”)

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory

User
Space

Kernel
Space

 Application

Load/
Store

Standard
File API

PM-Aware
File System

MMU
Mapp
ings

libraries

•  NVM.PM.FILE
programming model
“surfaces” PM to
application

•  Still somewhat raw at that
point

•  Build on it with
additional libraries

•  Eventually turn to
language extensions

Building on the Basic PM Model

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Creating Resilient Data Structures

r  Once PMem is mapped into application, a malloc-like interface is
required

r  Traditional:
r  ptr = pmemalloc(pmem_pool, len)

r  New and interesting issues:
r  What if program crashes before anything links to ptr?

r  Memory leak – Persistent memory leak
r  What if program is half-way through linking it in?

r  Transactions required? How complex?
r  How to test issues that didn’t happen w/volatile memory?

r  Fault-injection testing
r  Not just for malloc – true for all PM data structures

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Full Example

r  https://github.com/pmem/linux-examples

r  libpmem
r  Helper functions for PM API

r  libpmemalloc
r  Example of a PM-safe malloc library

r  Fault injection framework
r  Proof-by-exhaustion of algorithm resilience
r  At least for simple examples…

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

What Might malloc Look Like?

r  Start with a linked-list data structure:

struct node {
 struct node *next_;
 int value;

};

r  Traditional “malloc” is now done in steps:

r Reserved the memory
r Fill it in (prepare for use)
r Link it in

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

malloc Example…

r  Start with a linked-list data structure:

struct node {
 struct node *next_;
 int value;

};

r  Traditional “malloc” is now done in steps:

r Reserved the memory
r Fill it in (prepare for use)
r Link it in

interruption

finishê

undoé

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Summary

r  NVM Programming Models are Evolving
r  Incremental block device features
r Disruptive: Persistent Memory!

r  The Industry is Aligning Around New Models
r SNIA NVM Programming TWG
r Emerging Research, Products

r  Apps Can Leverage Persistent Memory
r Using File System/DB Techniques
r Using Libraries & Language Extensions

32

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Open Questions

r  XIP Support in FreeBSD
r Current thinking on approach
r mmap/msync control point in file system?
r Alternatively, core kernel PM support?

r  ACPI support in FreeBSD for NVDIMMs?
r Load driver based on ACPI device

33

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

For More…

r  SNIA NVM Programming TWG
r  http://snia.org/forums/sssi/nvmp

r  Linux Pmem Examples:
r  https://github.com/pmem/linux-examples

r  Linux PMFS:
r  https://github.com/linux-pmfs

r  andy.rudoff@intel.com

34

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Some Additional Details

35

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Breaking malloc Into Steps

np = pmemalloc_reserve(sizeof(*np));

/* link it in at the beginning of the list */
np->next = rootnp;
np->value = value;
pmemalloc_onactive(np, &rootnp, np);

pmemalloc_activate(np);

rootnp

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Breaking malloc Into Steps

np = pmemalloc_reserve(sizeof(*np));

/* link it in at the beginning of the list */
np->next = rootnp;
np->value = value;
pmemalloc_onactive(np, &rootnp, np);

pmemalloc_activate(np);

rootnp

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Breaking malloc Into Steps

np = pmemalloc_reserve(sizeof(*np));

/* link it in at the beginning of the list */
np->next = rootnp;
np->value = value;
pmemalloc_onactive(np, &rootnp, np);

pmemalloc_activate(np);

rootnp

rootnp

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Breaking malloc Into Steps

np = pmemalloc_reserve(sizeof(*np));

/* link it in at the beginning of the list */
np->next = rootnp;
np->value = value;
pmemalloc_onactive(np, &rootnp, np);

pmemalloc_activate(np);

timeê

interruption

finishê

undoé

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

With the Details…

if ((np_ = pmemalloc_reserve(pmp, sizeof(*np_))) == NULL)
 FATALSYS("pmemalloc_reserve");

/* link it in at the beginning of the list */
PMEM(pmp, np_)->next_ = sp->rootnp_;
PMEM(pmp, np_)->value = value;
pmemalloc_onactive(pmp, np_, (void **)&sp->rootnp_, np_);

pmemalloc_activate(pmp, np_);

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Position Dependence
r  Can pointers work

across sessions?

r  Will a PM file be
mapped at the same
address every time?

text

data

BSS

heap

memory

mapped

stack

kernel

persistent

memory

element

element

random

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory

User
Space

Kernel
Space

Standard
File API

Block Driver

Application

File System

 Application

Load/
Store

Standard
File API

PM-Aware
File System

MMU
Mapp
ings

Interposing

“filter” Driver

The “C-Clamp”

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Persistent Memory

User
Space

Kernel
Space

 Application

Load/
Store

Standard
File API

PM-Aware
File System

MMU
Mapp
ings

libraries
(high confidence)

page modification
tracking

(research topic)

PM Interposition Points

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

•  Charter: Develop specifications for new software
“programming models” as NVM becomes a standard
feature of platforms
−  Scope:

§  In-kernel NVM programming models
§  Kernel-to-application programming models

−  Programming models specify the exact technical behavior, up to
(but not including) the OS specific API semantics

•  APIs
−  Each OSV codes the programming models to specific to OS

SNIA NVM Programming TWG

2013 FreeBSD Vendor Summit © Intel Corporation. All Rights Reserved.

Programming Model vs. API

r  OSVs own their kernel APIs
r Cannot define these in a committee and push on OSVs
r Cannot define one API for multiple OS platforms

r  Serious differences on how things work in the kernel
r  Goes against independent innovation

r Next best thing is to agree on overall model
r  With OSV collaboration
r  Then engage OSV to define and implement API

r  Similar situation in user-space
r A common API doesn’t always make sense

r  Violates the “when in Rome” design principle
r  Example: the UNIX* versus the Windows* event models

r Ultimately: want OSV to ship and maintain the API

