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Introduction

 Synchronisation is critical to many applications
๏ Telecommunication Industry, Power Industry, Finance ...

 Network monitoring / Traffic analysis
๏ Accuracy of packet timestamping was not good enough

 RADclock project
๏ Robust Absolute and Difference Clock
๏ Software clock
๏ Alternative to ntpd
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 Clocks are built upon oscillators (= hardware counters)
๏ HPET, ACPI, TSC
๏ Counters are not perfect and drift (temperature variation, ageing...)
๏ The job of the synchronisation algorithm is to track drift

 Synchronisation over the network
๏ Client send request to a reference clock: “what time is it?”
๏ Algo input: 2 server timestamps, 2 client timestamps
๏ ntpd has been the solution for the past 25 years +

Synchronisation over the Network
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ntpd Performs Well

 Lab environment experiment
๏ Good time server: Stratum-1, Atomic Clock locked to GPS receiver
๏ Client is on the same LAN, barely any traffic
๏ Constrained and small polling period: 16 sec
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ntpd does NOT Perform Well

 Same setup but changed configuration

 Follow ntpd’s instructions
๏ Multiple servers
๏ Relax constraint on polling period
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ntpd Performs ... ?

 No guarantee on ntpd’s performance

 Feedback design
๏ Timestamps are input to ntpd clock correction algo
๏ ntpd adjusts the system clock that produces timestamps
๏ What if it get it wrong ... ?

 Convergence ...
๏ takes time
๏ may never reach acceptable level 
๏ is not guaranteed when faced with very variable network noise
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An Alternative Exists

 Feed-Forward approach
๏ Decouples timekeeping from timestamping

‣ Timestamp events using “RAW” counter values
๏ Previous clock adjustments do not influence current one

 Advantages
๏ Robust clock-independent filtering
๏ Can define several clocks
๏ Simpler kernel support
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Kernel Modifications

 Modify Timecounters1 abstraction
๏ New cumulative counter
๏ 64 bit wide: does not wrap around

 Timestamping function returns cumulative counter value
๏ RAW timestamps

 Feed-Forward clock data to be maintained in the kernel
๏ Convert RAW timestamps to timeval / timespec
๏ Pushed by the RADclock synchronisation daemon
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Clock Models in Practice

 ntpd: actively adjusts clock rate to track drift

๏ Cntpd(t) = Period(t) * (counter(t) - counter(told))  +  Cntpd(told)

๏ Period changes on each update ⇒ no rate stability

 RADclock: estimates clock rate and tracks drift
๏ 2 clocks can be defined: difference and absolute clock

๏ Cd(t1,t2) = Period * (ffcounter(t2) - ffcounter(t1))

๏ Ca(t) = Period * ffcounter(t) + Offset(t)

๏ Period is a long term average (barely changes) ⇒ rate stability

๏ Offset tracks the drift  ⇒ changes on every clock update
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RADclock: Difference Clock
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Absolute Clock
Difference Clock

 Difference clock

๏ Cd(t1,t2) = Period * (ffcounter(t2) - ffcounter(t1))

๏ Can be defined since RADclock ensures stable rate

 Use the difference clock to measure (small) time intervals!
๏ In Kernel Pulse-Per Second Timestamping
๏ Timestamp a 1 sec interval with Absolute and Difference clock



RADclock: Absolute Clock

 Absolute Clock

๏ Ca(t) = Period * ffcounter(t) + Offset(t)

 Robust RTT filtering based on the Difference Clock
๏ Stratum-1 on a LAN
๏ Polling period 1024 sec, no cross traffic
๏ RADclock and ntpd share the same flow of NTP packets
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RADclock: Absolute Clock

 Polling Period and Server Distance
๏ Each dataset is over 1 month long

 RADclock outperforms ntpd all the time
๏ Better performance
๏ More robust
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Fast Timestamping

 It is not only about performance / robustness

 Timestamping and Timekeeping are decoupled
๏ Counter values do not have to be converted to time right away
๏ Clock parameters are updated on every NTP packet only!

 Fast timestamping and delayed conversion
๏ Store RAW counter values only
๏ Retrieve clock parameters when you are less busy
๏ Convert counter values to time
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Replaying Time
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Replaying Time

 You can even replay (and improve) the clock time!
๏ Make a better job in post-processing
๏ You have access to all NTP packets

14

Timestamps

3688

4980

5800

6200

 Going further: timestamps created in post-processing
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Virtualization

 Feed-Forward requires a simpler kernel support
๏ Push clock parameters (period and offset) to kernel

 Application to clock dependent synchronisation in Xen
๏ Dom0 runs the sync’ daemon, write clock params to XenStore
๏ DomU reads parameters from XenStore
๏ Live migration works: simply read from “migrated XenStore”
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Summary

 Feed-Forward approach has many advantages
๏ the difference clock can be defined 
๏ the absolute clock is a more robust clock
๏ time can be replayed
๏ a simpler kernel support
๏ it enable clock dependent mode for virtualization

 Feedback and Feed-Forward can co-exist
๏ Feedback is still very good for local synchronisation (GPS, etc)
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Looking forward

 What we have now:
๏ RADclock daemon is an implementation of Feed-Forward clock
๏ http://www.cubinlab.ee.unimelb.edu.au/radclock/
๏ FreeBSD kernel support

‣ Developed since FreeBSD 5.3
‣ Still very RADclock / prototype oriented

 What is coming next?
๏ FreeBSD Foundation project

‣ Develop generic support for Feed-Forward clock
‣ Give users the choice to use Feed-Forward or Feedback
‣ Give users the choice to use an Absolute or Difference Clock
‣ Develop a fully functional system clock 

๏ Get you guys to try it !
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