
High-performance TCP/IP networking for 
bhyve VMs using netmap passthrough
Belgrade, 23rd September 2016, Vincenzo Maffione
Università di Pisa



HOST

Introduction

● Network I/O virtualization is about 
attaching the Virtual Machines to the 
network of the hypervisor/host.

● Let different VMs on the same host 
communicate among them and with the 
external physical network.

● Hot use-cases → Network Function 
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Traditional VM networking



Traditional VM networking - Front end

● A guest NIC comes with its own device model
○  An emulated commercial NIC (e.g. e1000, r8169)
○ A paravirtualized NIC (e.g. virtio-net, Xen netfront)

● Device model implemented by a front-end module in 
the hypervisor

● Different model, different ring & descriptor format
○ Virtio-net: VirtQueues, Avail and Used rings, …
○ Xen netfront: I/O rings

○ Commercial NICs: hardware specs Intel, Realtek, … use formats 
specified in their documentation
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Traditional VM networking - Backend

● Front-end and back-end interact to transmit and 
receive packets to/from the host network

● Different back-ends usually available:
○ TAP: inject/receive packets from host TCP/IP stack
○ Socket: packets forwarded through a TCP or UDP socket

○ NAT: backend implements NAT (in user-space) to give a VM 
internet access

○ Netmap/DPDK: Packets injected/received from an high 
performance userspace networking framework

● Different back-end different packet representation
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Traditional VM networking - Packet formats

● The journey of a tx/rx packet is convoluted
● Guest driver uses mbuf/sk_buff
● Front-end uses a list of descriptors in a ring/queue
● Backend may use multiple formats:

○ TAP and sockets uses sk_buffs/mbufs
○ Netmap uses its API (netmap rings and slots)
○ ...

● Packet representation conversions is needed at each 
step
○ Conversions requires processing
○ Copies may be needed

○ Need driver/front-end synchronization and front-end/back-end 
synchronization
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A traditional deployment

● QEMU-KVM or bhyve 
hypervisor

● virtio-net front-end
○ With vhost acceleration on QEMU

● TAP backend attached to 
either
○ OpenVswitch switch instance, or
○ Standard in-kernel L2 bridge

● Many bottlenecks:
○ read/write to TAP interfaces
○ Virtual switch processing

○ driver/front-end conversions and 
synchronization KVM-HOST
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VM networking with Netmap passthrough



Towards an alternative approach - Netmap (1)

● Netmap is an API to directly access NIC TX/RX rings
○ It supports TX/RX batching, useful to remove I/O 

bottlenecks

● A netmap port is accessed through the netmap API
○ Hardware-independent rings and buffers are mapped into 

the userspace application address space

● Various port types, depending on the backing I/O
○ Physical ports (NICs)
○ VALE (virtual L2 switch) ports
○ Pipes
○ Monitors
○ ...
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Towards an alternative approach - Netmap (2)

● Differences with DPDK-based solutions:
○ Support for asynchronous notifications

■ Low CPU usage under low load
■ Notifications dynamically suppressed under high load

○ VALE provides isolation (packet copy) between untrusted VMs, 
while allowing for high performance
■ up to 20 Mpps between two ports
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VM

Towards an alternative approach - Passthrough

● What if we map netmap rings and buffers of an 
host port inside a VM?

● The VM could directly access the host port 
using the netmap API!

● A special pass-through port is used to do the 
trick
○ TX/RX sync operations (e.g. real synchronization with 

the NIC hardware) are performed by kernel threads in 
the host

○ Communication Status Block (CSB) used to 
synchronize guest ring indices with host ring indices

[ANCS 2015] - Virtual device passthrough for high speed VM networking 
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The ptnet device - Model

● ptnet is a paravirtualized NIC which uses the netmap 
API as the underlying device model

● No format conversions necessary between front-end 
and back-end

● Guest can access the back-end port directly, using 
netmap passthrough

● The front-end is used only for
○ Configuration: number of available queues
○ Control: start/stop kernel threads
○ Synchronization: kick/interrupt

● … but it’s not part of the datapath

[LANMAN 2016] Flexible Virtual Networking using netmap passthrough
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The ptnet device - Applications

● Support for applications running in netmap 
mode
○ They directly access the back-end netmap port

● Support for traditional socket applications
○ Conversion between sk_buff/mbuf and netmap slots is 

performed

○ The driver behaves as an application running in 
netmap mode

○ TSO and checksum offloadings
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Ptnet for NIC passthrough

● The VM sees all the queues of the physical NIC
● Netmap performance preserved in the guest

○ 14.88 Mpps TX/RX with a single core

● No PCI passthrough support needed in the 
hypervisor
○ Netmap code is reused
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Ptnet with VALE: deployment

● VALE as software switch between 
VMs and the NIC

● VALE ports are passed through to 
the VMs

● Up to 20 Mpps between different 
VMs
○ When using the netmap API
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FreeBSD ptnet implementation



FreeBSD implementation - Starting point

● Work presented here → GSoC 2016 project supported by FreeBSD
● Netmap passthrough for FreeBSD was already available at project start, but with 

some limitations:
○ Only support for netmap applications → No support for socket applications

○ Hacked virtio-net driver to expose the passed-through netmap → The virtio-net interface becomes 
unusable

○ No support for multi-queue



FreeBSD implementation - What’s new

● My contributions, to remove these limitations:
○ Ad hoc FreeBSD multi-queue NIC driver for netmap passthrough → ptnet
○ Bhyve PCI device model for ptnet
○ Reorganization of bhyve networking code to allow multiple net backends

● Some links:
○ Code available at https://github.com/luigirizzo/netmap
○ More info at https://wiki.freebsd.org/SummerOfCode2016/PtnetDriverAndDeviceModel

https://github.com/luigirizzo/netmap
https://wiki.freebsd.org/SummerOfCode2016/PtnetDriverAndDeviceModel


FreeBSD guest driver - Device attach

● Routines to probe/attach/detach ptnet PCI device:
○ Setup BARs of the ptnet PCI device
○ Read configuration of the passed-through host port from I/O registers

■ Number of TX/RX queues and per-queue slots
○ Allocate and setup Communication Status Block (CSB) memory for guest-host fast 

synchronization.
○ Setup MSI-X interrupts, one per queue
○ Setup ifnet (if_t) struct and ether_ifattach() 

■ For socket applications
○ Setup netmap adapter and netmap_attach()

■ For netmap applications



FreeBSD guest driver - Netmap adapter

● Main callbacks to expose to netmap:
○ Netmap register:

■ Switch the NIC from/to netmap mode
● NIC stolen to network stack

■ Start/stop kthreads in the host
○ Netmap TXSYNC and RXSYNC:

■ Code completely shared with Linux ptnet 
driver

■ CSB sync: publish new guest ring indices 
and read current host indices

■ Kick the host (write to a per-queue I/O 
register) if necessary
● The kick wakes up a kthread
● Kthreads poll the CSB for more work
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FreeBSD guest driver - Network stack

● Basic idea: kernel-space network stack uses the NIC like an user-space netmap application
● Data copied back and forth between mbufs  and netmap buffers. 
● Per-queue taskqueues used for deferred receive or transmit work

○ Work deferred on interrupt or when running out of budget
○ Budget used to avoid be greedy on CPU

● Network stack callbacks, e.g.
○ ptnet_ioctl, to manage interface flags:

■ IFF_UP/IFF_DOWN: Switch netmap mode on (off) and (un)set the RUNNING flag
■ IFCAP_POLLING: Switch back and forth from polling mode

● Need to sync with taskqueues when switching on
○ ptnet_transmit:

■ Push mbuf into a per-queue ringbuffer (drbr) and call the ringbuffer drain routine
○ ptnet_poll: polling routine



FreeBSD guest driver - Offloadings support

● virtio-net header - prepended to each Ethernet frame - is the key to boost TCP performance:
○ TCP Segmentation Offloading
○ TCP/UDP checksum offloading

● Mechanism, in short:
○ VMs on the same host can exchange 32K/64K TCP packets without never performing 

TCP segmentation or computing TCP checksum
○ If a TSO packet needs to leave the host system, segmentation and checksumming can 

be offloaded to real NIC hardware
● Header supported by the VALE switch ports
● ptnet supports virtio-net header in the same way as virtio-net does:

○ virtio-net-header processing code copied from if_vtnet.c
○ TODO: this code should be shared between the two drivers
○ A sysctl available to disable the header (e.g. for middleboxes)



FreeBSD host - vmm.ko extensions

● Some modification to vmm.ko and libvmm were necessary to
○ Make it possible for netmap (kthreads) to intercept guest register write from within the 

kernel
○ Make it possible for bhyve to map host netmap memory inside bhyve guests

● Adopted code from previous GSoC project
○ https://wiki.freebsd.org/SummerOfCode2015/ptnetmapOnBhyve

https://wiki.freebsd.org/SummerOfCode2015/ptnetmapOnBhyve
https://wiki.freebsd.org/SummerOfCode2015/ptnetmapOnBhyve


FreeBSD host - ptnet device model for bhyve

● ~400 lines of code
● Device model callbacks:

○ ptnet_init()

■ Setup PCI device, including MSI-X and I/O registers
■ Create a netmap port backend in passthrough mode

○ ptnet_bar_read() and ptnet_bar_write(), to manage I/O register access
■ CSBBAH, CSBBAL: configure CSB physical address
■ VNET_HDR_LEN: specify virtio-net-header len (0 to disable)
■ Read only registers: number of tx/rx rings/slots, …
■ PTCTL, to configure kthreads:

● per-queue MSI-X interrupt info
● per-queue kick register info (to allow them to intercept I/O writes)
● Start (stop) kthreads



FreeBSD host - bhyve networking reorganization

● Adopted previous code of mine to add support for multiple backend and frontends
● Supported combinations:

○ virtio-net + TAP
○ virtio-net + Netmap 
○ ptnet + Netmap

● Example:
○ # bhyve -c 2 -m 1G -A -H -P \

        -s 31,lpc -l com1,stdio \

        -s 0:0,hostbridge \

        -s 1:0,virtio-net,tap1 \          # virtio-net NIC + TAP backend

        -s 2:0,virtio-net,vale0:2 \       # virtio-net NIC + netmap userspace backend

        -s 3:0,ahci-hd,freebsdimg.raw \

        -s 4:0,ptnet,vale1:1 \            # ptnet NIC + ptnetmap kernelspace backend

        -s 5:0,ptnetmap-memdev \          # ptnetmap memory device, needed by the ptnet NIC

        vm1



Performance evaluation and comparisons



Test setup

● CPU: Intel CPU 3770K, 4 physical cores, 2 hyperthreads per-core

● Memory: 8 GB DD3 @ 1.33 MHz

● Two bhyve VMs connected in two possible configurations:

○  traditional in kernel bridge, with TAP devices

○ a VALE switch

● Ping utility and Netperf tool used to measure throughput and latency



Test setup
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Performance - Ping round-trip-time

● Results collected with “ping -fq”.



Performance - TCP/UDP request-response latency

● Latency is low for ptnet, since the packet journey is shorter and simpler!



Performance - TCP/UDP packet-rate throughput

● Performance heavily affected by SP/SC synchronization.



Performance - TCP/UDP bulk throughput

● TCP works well because of (1) offloadings, (2) reduced latency
● FreeBSD does not support UDP Fragmentation Offloading (UFO)



Performance - bhyve vs QEMU-KVM

● The only difference is in kick/interrupt implementation, which should not make a big 
difference

● A latency problem is laying somewhere else



Performance - Possible bhyve execution overhead?

● Netperf tests on the loopback device: physical vs virtualized, no I/O involved.
● Bhyve seems to run code slower

○ HPET virtualization is missing?
○ Overhead in memory virtualization?



Demo



Demo setup
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Thanks!

Contact:
● Vincenzo Maffione <v.maffione@gmail.com>


