
High-performance TCP/IP networking for
bhyve VMs using netmap passthrough
Belgrade, 23rd September 2016, Vincenzo Maffione
Università di Pisa

HOST

Introduction

● Network I/O virtualization is about
attaching the Virtual Machines to the
network of the hypervisor/host.

● Let different VMs on the same host
communicate among them and with the
external physical network.

● Hot use-cases → Network Function
Virtualization

VM VM VM

VM VM

Network I/O
Virtualization
Technology VMVM

NIC NIC

Physical
Network

Outline

1. Traditional VM networking

2. VM networking with Netmap passthrough

3. FreeBSD ptnet implementation

4. Performance evaluation and comparisons

5. Demo

Traditional VM networking

Traditional VM networking - Front end

● A guest NIC comes with its own device model
○ An emulated commercial NIC (e.g. e1000, r8169)
○ A paravirtualized NIC (e.g. virtio-net, Xen netfront)

● Device model implemented by a front-end module in
the hypervisor

● Different model, different ring & descriptor format
○ Virtio-net: VirtQueues, Avail and Used rings, …
○ Xen netfront: I/O rings

○ Commercial NICs: hardware specs Intel, Realtek, … use formats
specified in their documentation

VM

NIC driver

HYPERVISOR

Front-end

Register
access

Interrupt

Traditional VM networking - Backend

● Front-end and back-end interact to transmit and
receive packets to/from the host network

● Different back-ends usually available:
○ TAP: inject/receive packets from host TCP/IP stack
○ Socket: packets forwarded through a TCP or UDP socket

○ NAT: backend implements NAT (in user-space) to give a VM
internet access

○ Netmap/DPDK: Packets injected/received from an high
performance userspace networking framework

● Different back-end different packet representation

VM

NIC driver

HYPERVISOR

Front-end

Register
access

Interrupt

Back-end

pkt
tx

pkt
rx

Traditional VM networking - Packet formats

● The journey of a tx/rx packet is convoluted
● Guest driver uses mbuf/sk_buff
● Front-end uses a list of descriptors in a ring/queue
● Backend may use multiple formats:

○ TAP and sockets uses sk_buffs/mbufs
○ Netmap uses its API (netmap rings and slots)
○ ...

● Packet representation conversions is needed at each
step
○ Conversions requires processing
○ Copies may be needed

○ Need driver/front-end synchronization and front-end/back-end
synchronization

VM

HYPERVISOR

Register
access

Interrupt

pkt
tx

pkt
rx

sk_buff

chain of
descriptors

other format

A traditional deployment

● QEMU-KVM or bhyve
hypervisor

● virtio-net front-end
○ With vhost acceleration on QEMU

● TAP backend attached to
either
○ OpenVswitch switch instance, or
○ Standard in-kernel L2 bridge

● Many bottlenecks:
○ read/write to TAP interfaces
○ Virtual switch processing

○ driver/front-end conversions and
synchronization KVM-HOST

VM VM VM

VM

VM

OpenVSwitch

VM

VM
NIC

Physical
Network

taptaptap

tap

tap

tap tap

VM networking with Netmap passthrough

Towards an alternative approach - Netmap (1)

● Netmap is an API to directly access NIC TX/RX rings
○ It supports TX/RX batching, useful to remove I/O

bottlenecks

● A netmap port is accessed through the netmap API
○ Hardware-independent rings and buffers are mapped into

the userspace application address space

● Various port types, depending on the backing I/O
○ Physical ports (NICs)
○ VALE (virtual L2 switch) ports
○ Pipes
○ Monitors
○ ...

Netmap application

Netmap Port

buf

buf

buf

TX ring

buf

buf

buf

RX ring

Towards an alternative approach - Netmap (2)

● Differences with DPDK-based solutions:
○ Support for asynchronous notifications

■ Low CPU usage under low load
■ Notifications dynamically suppressed under high load

○ VALE provides isolation (packet copy) between untrusted VMs,
while allowing for high performance
■ up to 20 Mpps between two ports

Netmap application

Netmap Port

buf

buf

buf

TX ring

buf

buf

buf

RX ring

VM

Towards an alternative approach - Passthrough

● What if we map netmap rings and buffers of an
host port inside a VM?

● The VM could directly access the host port
using the netmap API!

● A special pass-through port is used to do the
trick
○ TX/RX sync operations (e.g. real synchronization with

the NIC hardware) are performed by kernel threads in
the host

○ Communication Status Block (CSB) used to
synchronize guest ring indices with host ring indices

[ANCS 2015] - Virtual device passthrough for high speed VM networking

Pass-through port

buf

buf

buf

TX ring

buf

buf

buf

RX ring

Netmap application

CSB

Kernel threadsHost port

http://info.iet.unipi.it/~luigi/papers/20150315-netmap-passthrough.pdf

The ptnet device - Model

● ptnet is a paravirtualized NIC which uses the netmap
API as the underlying device model

● No format conversions necessary between front-end
and back-end

● Guest can access the back-end port directly, using
netmap passthrough

● The front-end is used only for
○ Configuration: number of available queues
○ Control: start/stop kernel threads
○ Synchronization: kick/interrupt

● … but it’s not part of the datapath

[LANMAN 2016] Flexible Virtual Networking using netmap passthrough

VM

ptnet driver

HYPERVISOR

ptnet
(front-end)

Register
access Interrupt

netmap port
(back-end)

http://info.iet.unipi.it/%7Eluigi/papers/20160613-ptnet.pdf

The ptnet device - Applications

● Support for applications running in netmap
mode
○ They directly access the back-end netmap port

● Support for traditional socket applications
○ Conversion between sk_buff/mbuf and netmap slots is

performed

○ The driver behaves as an application running in
netmap mode

○ TSO and checksum offloadings

VM

ptnet driver

network
stack

netmap
module

socket
application

netmap
application

Host netmap port

buf

buf

buf

TX ring

buf

buf

buf

RX ring

CSB

Ptnet for NIC passthrough

● The VM sees all the queues of the physical NIC
● Netmap performance preserved in the guest

○ 14.88 Mpps TX/RX with a single core

● No PCI passthrough support needed in the
hypervisor
○ Netmap code is reused

VM

ptnet driver

application

Host netmap port

buf

buf

buf

TX ring

buf

buf

buf

RX ring

CSB

10 Gbit NIC

Ptnet with VALE: deployment

● VALE as software switch between
VMs and the NIC

● VALE ports are passed through to
the VMs

● Up to 20 Mpps between different
VMs
○ When using the netmap API

KVM-HOST

VM

VALE switch NIC
Physical
Network

port port

ptnet

VM
ptnet

VM port
ptnet

VM
ptnet

port

VM
ptnet

port

FreeBSD ptnet implementation

FreeBSD implementation - Starting point

● Work presented here → GSoC 2016 project supported by FreeBSD
● Netmap passthrough for FreeBSD was already available at project start, but with

some limitations:
○ Only support for netmap applications → No support for socket applications

○ Hacked virtio-net driver to expose the passed-through netmap → The virtio-net interface becomes
unusable

○ No support for multi-queue

FreeBSD implementation - What’s new

● My contributions, to remove these limitations:
○ Ad hoc FreeBSD multi-queue NIC driver for netmap passthrough → ptnet
○ Bhyve PCI device model for ptnet
○ Reorganization of bhyve networking code to allow multiple net backends

● Some links:
○ Code available at https://github.com/luigirizzo/netmap
○ More info at https://wiki.freebsd.org/SummerOfCode2016/PtnetDriverAndDeviceModel

https://github.com/luigirizzo/netmap
https://wiki.freebsd.org/SummerOfCode2016/PtnetDriverAndDeviceModel

FreeBSD guest driver - Device attach

● Routines to probe/attach/detach ptnet PCI device:
○ Setup BARs of the ptnet PCI device
○ Read configuration of the passed-through host port from I/O registers

■ Number of TX/RX queues and per-queue slots
○ Allocate and setup Communication Status Block (CSB) memory for guest-host fast

synchronization.
○ Setup MSI-X interrupts, one per queue
○ Setup ifnet (if_t) struct and ether_ifattach()

■ For socket applications
○ Setup netmap adapter and netmap_attach()

■ For netmap applications

FreeBSD guest driver - Netmap adapter

● Main callbacks to expose to netmap:
○ Netmap register:

■ Switch the NIC from/to netmap mode
● NIC stolen to network stack

■ Start/stop kthreads in the host
○ Netmap TXSYNC and RXSYNC:

■ Code completely shared with Linux ptnet
driver

■ CSB sync: publish new guest ring indices
and read current host indices

■ Kick the host (write to a per-queue I/O
register) if necessary
● The kick wakes up a kthread
● Kthreads poll the CSB for more work

VM

Pass-through port

buf

buf

buf

TX ring

buf

buf

buf

RX ring

Netmap application

CSB

Kernel threadsHost port

FreeBSD guest driver - Network stack

● Basic idea: kernel-space network stack uses the NIC like an user-space netmap application
● Data copied back and forth between mbufs and netmap buffers.
● Per-queue taskqueues used for deferred receive or transmit work

○ Work deferred on interrupt or when running out of budget
○ Budget used to avoid be greedy on CPU

● Network stack callbacks, e.g.
○ ptnet_ioctl, to manage interface flags:

■ IFF_UP/IFF_DOWN: Switch netmap mode on (off) and (un)set the RUNNING flag
■ IFCAP_POLLING: Switch back and forth from polling mode

● Need to sync with taskqueues when switching on
○ ptnet_transmit:

■ Push mbuf into a per-queue ringbuffer (drbr) and call the ringbuffer drain routine
○ ptnet_poll: polling routine

FreeBSD guest driver - Offloadings support

● virtio-net header - prepended to each Ethernet frame - is the key to boost TCP performance:
○ TCP Segmentation Offloading
○ TCP/UDP checksum offloading

● Mechanism, in short:
○ VMs on the same host can exchange 32K/64K TCP packets without never performing

TCP segmentation or computing TCP checksum
○ If a TSO packet needs to leave the host system, segmentation and checksumming can

be offloaded to real NIC hardware
● Header supported by the VALE switch ports
● ptnet supports virtio-net header in the same way as virtio-net does:

○ virtio-net-header processing code copied from if_vtnet.c
○ TODO: this code should be shared between the two drivers
○ A sysctl available to disable the header (e.g. for middleboxes)

FreeBSD host - vmm.ko extensions

● Some modification to vmm.ko and libvmm were necessary to
○ Make it possible for netmap (kthreads) to intercept guest register write from within the

kernel
○ Make it possible for bhyve to map host netmap memory inside bhyve guests

● Adopted code from previous GSoC project
○ https://wiki.freebsd.org/SummerOfCode2015/ptnetmapOnBhyve

https://wiki.freebsd.org/SummerOfCode2015/ptnetmapOnBhyve
https://wiki.freebsd.org/SummerOfCode2015/ptnetmapOnBhyve

FreeBSD host - ptnet device model for bhyve

● ~400 lines of code
● Device model callbacks:

○ ptnet_init()

■ Setup PCI device, including MSI-X and I/O registers
■ Create a netmap port backend in passthrough mode

○ ptnet_bar_read() and ptnet_bar_write(), to manage I/O register access
■ CSBBAH, CSBBAL: configure CSB physical address
■ VNET_HDR_LEN: specify virtio-net-header len (0 to disable)
■ Read only registers: number of tx/rx rings/slots, …
■ PTCTL, to configure kthreads:

● per-queue MSI-X interrupt info
● per-queue kick register info (to allow them to intercept I/O writes)
● Start (stop) kthreads

FreeBSD host - bhyve networking reorganization

● Adopted previous code of mine to add support for multiple backend and frontends
● Supported combinations:

○ virtio-net + TAP
○ virtio-net + Netmap
○ ptnet + Netmap

● Example:
○ # bhyve -c 2 -m 1G -A -H -P \

 -s 31,lpc -l com1,stdio \

 -s 0:0,hostbridge \

 -s 1:0,virtio-net,tap1 \ # virtio-net NIC + TAP backend

 -s 2:0,virtio-net,vale0:2 \ # virtio-net NIC + netmap userspace backend

 -s 3:0,ahci-hd,freebsdimg.raw \

 -s 4:0,ptnet,vale1:1 \ # ptnet NIC + ptnetmap kernelspace backend

 -s 5:0,ptnetmap-memdev \ # ptnetmap memory device, needed by the ptnet NIC

 vm1

Performance evaluation and comparisons

Test setup

● CPU: Intel CPU 3770K, 4 physical cores, 2 hyperthreads per-core

● Memory: 8 GB DD3 @ 1.33 MHz

● Two bhyve VMs connected in two possible configurations:

○ traditional in kernel bridge, with TAP devices

○ a VALE switch

● Ping utility and Netperf tool used to measure throughput and latency

Test setup

VALE switch
instance

VM #1

vale:1ptnet0

if_bridge
instance

tap1

vtnet0

10.10.9.1 10.10.10.1

bridge0

netperf pkt-gen

netmap
Network

stack

VM #2

vale:2 ptnet0

tap2

vtnet0

10.10.9.210.10.10.2

netperfpkt-gen

netmap
Network

stack

10.10.9.200

Performance - Ping round-trip-time

● Results collected with “ping -fq”.

Performance - TCP/UDP request-response latency

● Latency is low for ptnet, since the packet journey is shorter and simpler!

Performance - TCP/UDP packet-rate throughput

● Performance heavily affected by SP/SC synchronization.

Performance - TCP/UDP bulk throughput

● TCP works well because of (1) offloadings, (2) reduced latency
● FreeBSD does not support UDP Fragmentation Offloading (UFO)

Performance - bhyve vs QEMU-KVM

● The only difference is in kick/interrupt implementation, which should not make a big
difference

● A latency problem is laying somewhere else

Performance - Possible bhyve execution overhead?

● Netperf tests on the loopback device: physical vs virtualized, no I/O involved.
● Bhyve seems to run code slower

○ HPET virtualization is missing?
○ Overhead in memory virtualization?

Demo

Demo setup

VALE switch
instance

VM #1

vale:1ptnet0

if_bridge
instance

tap1

vtnet0

10.10.9.1 10.10.10.1

bridge0

netperf pkt-gen

netmap
Network

stack

VM #2

vale:2 ptnet0

tap2

vtnet0

10.10.9.210.10.10.2

netperfpkt-gen

netmap
Network

stack

10.10.9.200

Thanks!

Contact:
● Vincenzo Maffione <v.maffione@gmail.com>

