
Interesting things
with LLVM

Brainstorming session

Robert N. M. Watson
FreeBSD Toolchain Summit - 10 May 2010



New technology.
New opportunities?
• LLVM = Low Level Virtual Machine

• Portable intermediate representation (IR)

• Link-time optimization (LTO)

• Easily analyzed, instrumented, extended

• Lots of ideas floating around

• Idle-time code reoptimization, static 
analysis, incremental recompilation, ...

2



LLVM internal 
representation (IR)
• Native code generation from portable 

virtual machine instruction set (“bitcode”)

• Low-level: RISCish (with casts, unwind)

• Includes type annotations (cast instr)

• Static analysis, optimization (especially inter-
procedural, inter-language), transforms, ...

3



Sorts of things we 
might think about...
• C language extensions (K, Blocks)

• Static analysis aware of our conventions/quirks

• Language-aware instrumentation for invariants, 
debugging, DTrace probe insertion, locking asserts..

• Statically testable language and bitcode subsets 
(“driver subset”, “BPF-like”, “TCB”)

• Fat binaries: default target, bitcode, locally 
reoptimized strategically, runtime rewriting and 
even live kernel/process rewriting

• Your ideas here…

4



Risks and problems

• When is it OK to depend on a feature 
specific to clang/LLVM/...?

• Ever?

• Certain architectures?

• Certain OS features?

• Debugging only?

• What about other tools: Coverity, fxr, ...?

5



Brainstorming...

6


