New event timers infrastructure

Alexander Motin
mav@FreeBSD.org

Karlsruhe, October 8, 2010
• Before:
 – each platform has own event timers management code;
 – x86 timers code very tangled, no HPET support;
 – timer interrupts have fixed frequency from HZ to 4 * HZ;
 – statclock often aliased or equal to hardclock;
 – profclock often equal to hardclock;
 – high interrupt rate increases idle power consumption, while lowering HZ increases time granularity.
• Project consists of several parts:
 – create MI event timer driver API (done);
 – write MI event timers management code (done);
 – port MD event timer drivers to new MI API and remove MD management code:
 • arm
 – Marvell (done)
 – others (todo)
 • amd64 (done)
 • i386 (done)
 – XEN PV (todo)
 • ia64 (todo)
 • mips (done)
 • pc98 (done)
 • powerpc (done)
 • sparc64 (done)
 • sun4v (done)
• MI event timer driver API (timeet.h, kern_et.c):
 – Driver:
 • struct eventtimer;
 • et_register(struct eventtimer *et);
 • et_deregister(struct eventtimer *et);
 – Consumer:
 • et_find(const char *name, int check, int want);
 • et_init(struct eventtimer *et, et_event_cb_t *event,
 et_deregister_cb_t *deregister, void *arg);
 • et_start(struct eventtimer *et, struct bintime *first, struct bintime *period);
 • et_stop(struct eventtimer *et);
 • et_free(struct eventtimer *et);
• MI event timers management code supports several modes:
 – one-shot per-CPU mode (preferred):
 • each CPU uses own one-shot capable even timer;
 • timers each time reprogrammed for the time of the next hardclock/statclock/proflock event;
 • when CPU idle -- timer programmed to skip events when no callouts scheduled (up to 1/4s);
 • IPI_HARDCLOCK may be used to wake up sleeping CPU to reprogram it’s timer on inter-CPU callout scheduling;
 • binuptime() used to track time.

CPU0 CPU1 CPU2 CPU3
– one-shot global mode:
 • single one-shot capable even timer used;
 • timer each time reprogrammed for the time of the next hardclock/statclock/proflock events for all CPUs;
 • one CPU handles timer interrupts; IPI_HARDCLOCK used to redistribute events to others, when needed;
 • when CPU idle -- skip events when no callouts scheduled (up to 1/4s);
 • binuptime() used to track time.
– periodic per-CPU mode:
 • each CPU uses own periodic even timer;
 • timers programmed to generate fixed interrupt rate (1-4 * HZ, increased to about 8KHz when profiling);
 • no interrupts could be skipped;
 • periodic timer interrupts used to track time.
– periodic global mode:
 • single periodic capable even timer used;
 • timer programmed to generate fixed interrupt rate (1-4 * HZ, increased to about 8KHz when profiling);
 • one CPU handles timer interrupts; IPI_HARDCLOCK used to redistribute events to others, when needed;
 • when CPU idle (except first) -- skip hardclock events when no callouts scheduled up to 1/4s;
 • periodic timer interrupts used to track time.
• Operation mode depends on hardware capabilities, but in most cases can be tuned via sysctl and loader tunables.
• As soon as BSP may not receive interrupts for a long time:
 – hardclock_anycpu() implemented to replace hardclock(); it may be called at any CPU to properly update system time and do other global routine jobs for any number of hardclock events;
 – if currently active timecounter wraps often -- BSP will wake up frequent enough to handle it.
 – if kernel built with DEVICE_POLLING -- BSP will not skip events.
• Implemented MD event timer drivers:
 – arm (Marvell):
 • CPUTimer0 (periodic and one-shot);
 – mips
 • MIPS32 (periodic and one-shot, per-CPU);
 – powerpc
 • decrementer (periodic and one-shot, per-CPU);
 – sparc64
 • tick/stick (periodic and one-shot, per-CPU);
 – sun4v
 • tick (periodic and one-shot, per-CPU);
 – x86:
 • HPET (periodic and one-shot, optionally per-CPU);
 • i8254 (periodic, optionally one-shot);
 • LAPIC (periodic and one-shot, per-CPU, stops in C3);
 • RTC (periodic).
`systat -vm 1` on 8-core system before:

<table>
<thead>
<tr>
<th>Mem:KB</th>
<th>REAL</th>
<th>VIRTUAL</th>
<th>VN PAGER</th>
<th>SWAP PAGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tot</td>
<td>Share</td>
<td>Tot</td>
<td>Share</td>
<td>Free</td>
</tr>
<tr>
<td>Act</td>
<td>33932</td>
<td>7432</td>
<td>613508</td>
<td>8848</td>
</tr>
<tr>
<td>All</td>
<td>154568</td>
<td>8832</td>
<td>1074444k</td>
<td>33404</td>
</tr>
</tbody>
</table>

Proc:

<table>
<thead>
<tr>
<th>r</th>
<th>p</th>
<th>d</th>
<th>s</th>
<th>w</th>
<th>Csw</th>
<th>Trp</th>
<th>Sys</th>
<th>Int</th>
<th>Sof</th>
<th>Flt</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>174</td>
<td>4</td>
<td>135</td>
<td>5</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.0%Sys</th>
<th>0.0%Intr</th>
<th>0.0%User</th>
<th>0.0%Nice</th>
<th>100%Idle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interrupts:

<table>
<thead>
<tr>
<th>cow</th>
<th>16421</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>zfod</td>
<td>ehci0</td>
<td>16</td>
</tr>
<tr>
<td>ozfod</td>
<td>2</td>
<td>ehci1</td>
</tr>
<tr>
<td>%ozfod</td>
<td>2052</td>
<td>cpu0:timer</td>
</tr>
<tr>
<td>daefr</td>
<td>3</td>
<td>re0</td>
</tr>
<tr>
<td>prcfr</td>
<td>ahci0</td>
<td>257</td>
</tr>
<tr>
<td>totfr</td>
<td>2052</td>
<td>cpu1:timer</td>
</tr>
<tr>
<td>react</td>
<td>2052</td>
<td>cpu6:timer</td>
</tr>
<tr>
<td>pdwak</td>
<td>2052</td>
<td>cpu3:timer</td>
</tr>
<tr>
<td>pdpgs</td>
<td>2052</td>
<td>cpu2:timer</td>
</tr>
<tr>
<td>intrn</td>
<td>2052</td>
<td>cpu4:timer</td>
</tr>
</tbody>
</table>

Namei Name-cache Dir-cache 142132 desvn

<table>
<thead>
<tr>
<th>Calls</th>
<th>hits</th>
<th>%</th>
<th>hits</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>100</td>
<td>658</td>
<td>numvn</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>frevn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disks ada0 ada1 ada2 cd0 pass0 pass1 pass2 154764 wire 2052 cpu5:timer

<table>
<thead>
<tr>
<th>KB/t</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>154764</th>
<th>wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>tps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20728</td>
<td>act</td>
</tr>
<tr>
<td>MB/s</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3795016</td>
<td>free</td>
</tr>
<tr>
<td>%busy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13232</td>
<td>buf</td>
</tr>
</tbody>
</table>
- `systat -vm 1` on 8-core system after:

```
1 users  Load  0.76  0.31  0.12  Sep 22 13:18

Mem:KB    REAL               VIRTUAL                VN PAGER  SWAP PAGER
         Tot  Share  Tot  Share  Free   in   out   in   out  count
Act  33928  7432  614856  8848  3794480  count
All  154796  8832  1074446k  33404  pages

Proc:    Interrupts
         r  p  d  s  w  Csw  Trp  Sys  Int  Sof  Flt  cow  92 total
        40  171  6  147  93  66  zfod  uart1  3
          ozfod  uart0  4
 0.0%Sys  0.0%Intr  0.0%User  0.0%Nice  100%Idle
          %ozfod  ehci0  16
dafefr  2  ehci1  23
prcfr  3  re0  256
totfr  2  ahci0  257
          28  dtbuf

Namei   Name-cache  Dir-cache  142132 desvn
Calls  hits  % hits  %  656  numvn
      3  3  100
      91  frevn

Disks  ada0  ada1  ada2  cd0  pass0  pass1  pass2  155400  wire
      5  hpet0:t0
KB/t  2.00  0.00  0.00  0.00  0.00  0.00  0.00  20860  act
      4  hpet0:t5
tps   2  0  0  0  0  0  0  12236  inact
      5  hpet0:t6
MB/s  0.00  0.00  0.00  0.00  0.00  0.00  0.00  68  cache
      8  hpet0:t7
%busy  0  0  0  0  0  0  0  3794412  free
      13168  buf
```
• Results:
• Temperature of Core i7-870 with boxed cooler with 25C at the room:
 – full load: 85C;
 – idle without PM: 55C;
 – idle w/ P-states+C-states: 32C.
• Time to build net/mpd5 port in one thread on Core i7-870:
 – default: 12,02c;
 – w/ C6 state used: 10,79c (10% more TurboBoost).
• Problems/further work directions:
 – some kernel subsystems generate too much events; it would be nice to remove or group some of them; callout(9) API may need to be extended to allow precision specified;
 – callout(9) call wheel optimized for periodic ticks; difficult to get next scheduled tick time; switch to some tree structure?
 – scheduler depends on both hardclock (via sched_tick()) and statclock (via sched_clock()); it would be nice to be able skip some hardclock/statclock calls also when CPU is active;
 – scheduler unaware about sleeping cores; it would be nice to not schedule to sleeping cores without real need;
 – cache/TLB invalidation IPIs sent to every CPU; it would be nice to avoid it, if possible;
 – write more efficient cpu_idle() methods for some platforms.
 – implement powertop alternative.

• Questions?