
CAM-based ATA implementation
3 ... 2 ... 1 ... Lift-off!

Alexander Motin
mav@FreeBSD.org



• ATA(4) was started more then 10 years ago and handled
generic ATA controllers well. But now there are problems:
– modern controllers use different APIs - driver API was

fuzzy and modern controllers still don’t fit it well;
– modern controllers support command queues - no support;
– SATA controllers and disks support NCQ - no support;
– SATA 2.x controllers support Port Multipliers - very limited

support;
– some with FIS-based switching - no support;
– SATA has number of additional features, such as interface

power management - no support;
– ATAPI tunnels SCSI commands over ATA - ata(4) ATAPI

drivers produce code duplication, atapicam(4) is not perfect;
– implements unfair scheduling;
– error recovery is quite limited due to limited state machine.



• CAM doesn’t have some of problems (command queueing, fair
scheduling, state machine). For others it allows solutions.

• CAM(4) improvements:
– XPT level was split and partially virtualized to allow support

for different transport types; SPI specific code moved to
SCSI XPT (thanks to Scott Long);.

– new ATA XPT implements specific management for PATA
and SATA buses, including port multipliers support;

– new XPT_ATA_IO request type allows transporting ATA
protocol commands; ATAPI devices can handle both
XPT_ATA_IO and XPT_SCSI_IO requests;

– peripheral drivers do not depend on device transport (SPI,
SAS, SATA, ...), only command protocol (SCSI, ATA, ...);
for ATA protocol disks implemented new driver ada(4);

– XPT code was improved to allow support more complicated
bus topologies;



• Updated CAM(4) structure

ahci

XPT

saXcdXadaXdaX

mvs

pmpX

aha umass ahc siis

sesX

ata

passX

GEOM User-level

PCIISA USB ISA

ATA (PATA, SATA)SCSI (SPI, ...)

Periph drivers.

Transport: Command queues. Generic error handling.

Interface Modules: Controller hardware drivers.

Bus management.



• ahci(4) driver supports:
– integrated and add-in AHCI-compatible SATA controllers;
– ATA and ATAPI devices;
– each port completely independent
– up to 32 queued commands per port;
– NCQ;
– SATA Port Multipliers (with FIS-based switching, when h/w

supports);
– MSI (one or multiple vectors);
– Command Completion Coalescing (if somebody wish);
– SATA power management;
– I/Os of any size, up to MAXPHYS.



• mvs(4) driver supports:
– several Marvell SATA chips: 88SX50xx, 88SX60xx and

88SX70xx, SoC;
– ATA and ATAPI devices (ATAPI with some limitations);
– each port completely independent;
– NCQ (up to 31 commands per port);
– SATA Port Multipliers (with FIS-based switching for NCQ

commands, when h/w supports);
– MSI;
– Command Completion Coalescing (if somebody wish);
– SATA power management;
– I/Os of any size, up to MAXPHYS.



• siis(4) driver supports:
– several SiliconImage SATA chips: SiI3124 - 4-port PCI-X,

SiI3132/3531 - 2/1-port PCIe x1;
– ATA and ATAPI devices;
– each port completely independent;
– 31 queued commands per port;
– NCQ;
– SATA Port Multipliers (with FIS-based switching);
– MSI (works only on SiI3124);
– device-initiated SATA power management;
– I/Os of any size, up to MAXPHYS;



• Refactored and turned into CAM SIM by `options ATA_CAM`
ata(4) supports:
– all legacy ATA chips;
– ATA and for most chips ATAPI devices;
– no queued commands;
– no NCQ;
– no SATA Port Multipliers (require a lot of cleanup, difficult

to keep compatibility with legacy mode);
– MSI supported for some controllers;
– I/Os of up to 512K size, depending on controller, respecting

MAXPHYS.



• ATA(4) structure

atasii

atacore

atapistatapifdatapicdatadisk

ataahci

atapicam

atapciatacard

Generic ATA

ataisa

Peripheral drivers

Command queue. NewBus. IRQ, DMA. Error handling.

GEOM CAM

Bus management B. m.

PMP PMP

PCIISA PCCard

B. m.

User-level

options ATA_CAM



• Kernel options:
– 8-STABLE and 9-CURRENT support both old and new

ATA stacks; 8-STABLE uses old stack by default,
9-CURRENT was recently switched to the new one.

– To use new ATA stack kernel config should include:
• device scbus
• device da
• device cd CAM
• device ...
• device pass
• device ahci
• device ata
• options ATA_CAM
• device mvs
• device siis

– devices atadisk, atapicd, atapifd, atapist, atapicam, ataraid
are not used by the new stack and should be removed.



• Kernel modules:
– devices scbus, da, cd, pass, etc are parts of the cam module.
– devices ahci, siis and mvs have own modules.
– device ata same as before consists of number of ata...

modules (ata, atapci, ataintel, ...).
– `options ATA_CAM` should be present in kernel config and

can’t be switched/loaded dynamically.



• Command equivalents:
– atacontrol list camcontrol devlist
– atacontrol cap camcontrol identify
– atacontrol reinit camcontrol reset
– atacontrol mode camcontrol negotiate
– atacontrol spindown camcontrol idle/standby/sleep
– atacontrol create/delete/... graid label/delete/...

• Device names equivalents:
– adX adaY
– acdX cdY
– afdX daY
– astX saY
– To simplify migration, adX => adaY symbolic links created

in /dev/, allowing to mount FSes by their old names without
demanding to update /etc/fstab beforehand.

– Mapping between names also reported during system boot.



• How it looks now (camcontrol devlist):

• How it looks now (dmesg):



• How it looks now (camcontrol identify):



• Performance:
– Number of random I/Os per second for different number of

threads with legacy ata(4) driver and ahci(4). Seagate
ST3320418AS on ICH10R AHCI HBA.



• Performance:
– Number of random I/Os per second for different number of

threads. gstripe of four Seagate ST3320418AS on SiI3124
HBA with SiI3726 Port Multiplier and ICH10R HBA with
and without Port Multiplier.



• As soon as ataraid(4) driver is not applicable to the new ATA
stack, RAID GEOM class was implemented to handle BIOS-
based software RAIDs.

• RAID GEOM follows modular design with APIs based on
KOBJ and consists of such parts: core, transformation
modules, metadata modules and graid(8) control tool.
– core part handles requests and events queues, geom

interoperation, etc.
– transformation modules handle different data

transformations, implementing different RAID levels. Now
implemented: RAID0, RAID1, RAID1E, RAID10, SINGLE,
CONCAT.

– metadata modules handle all vendor-specific things, such as
metadata fornats, disks and volumes management, spare
disks, etc. Now implemented: Intel, JMicron, NVIDIA,
Promise (also used by AMD/ATI) and SiI.



• Special thanks to:
– iXsystems Inc. for supporting my work;

– many FreeBSD users for feedback and hardware donations.

• Questions?


