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• ATA(4) was started more then 10 years ago and handled
generic ATA controllers well. But now there are problems:
– modern controllers use different APIs - driver API was

fuzzy and modern controllers still don’t fit it well;
– modern controllers support command queues - no support;
– SATA controllers and disks support NCQ - no support;
– SATA 2.x controllers support Port Multipliers - very limited

support;
– some with FIS-based switching - no support;
– SATA has number of additional features, such as interface

power management - no support;
– ATAPI tunnels SCSI commands over ATA - ata(4) ATAPI

drivers produce code duplication, atapicam(4) is not perfect;
– implements unfair scheduling;
– error recovery is quite limited due to limited state machine.



• CAM doesn’t have some of problems (command queueing, fair
scheduling, state machine). For others it allows solutions.

• CAM(4) improvements:
– XPT level was split and partially virtualized to allow support

for different transport types; SPI specific code moved to
SCSI XPT (thanks to Scott Long);.

– new ATA XPT implements specific management for PATA
and SATA buses, including port multipliers support;

– new XPT_ATA_IO request type allows transporting ATA
protocol commands; ATAPI devices can handle both
XPT_ATA_IO and XPT_SCSI_IO requests;

– peripheral drivers do not depend on device transport (SPI,
SAS, SATA, ...), only command protocol (SCSI, ATA, ...);
for ATA protocol disks implemented new driver ada(4);

– XPT code was improved to allow support more complicated
bus topologies;



• Updated CAM(4) structure

ahci

XPT

saXcdXadaXdaX

mvs

pmpX

aha umass ahc siis

sesX

ata

passX

GEOM User-level

PCIISA USB ISA

ATA (PATA, SATA)SCSI (SPI, ...)

Periph drivers.

Transport: Command queues. Generic error handling.

Interface Modules: Controller hardware drivers.

Bus management.



• ahci(4) driver supports:
– integrated and add-in AHCI-compatible SATA controllers;
– ATA and ATAPI devices;
– each port completely independent
– up to 32 queued commands per port;
– NCQ;
– SATA Port Multipliers (with FIS-based switching, when h/w

supports);
– MSI (one or multiple vectors);
– Command Completion Coalescing (if somebody wish);
– SATA power management;
– I/Os of any size, up to MAXPHYS.



• mvs(4) driver supports:
– several Marvell SATA chips: 88SX50xx, 88SX60xx and

88SX70xx, SoC;
– ATA and ATAPI devices (ATAPI with some limitations);
– each port completely independent;
– NCQ (up to 31 commands per port);
– SATA Port Multipliers (with FIS-based switching for NCQ

commands, when h/w supports);
– MSI;
– Command Completion Coalescing (if somebody wish);
– SATA power management;
– I/Os of any size, up to MAXPHYS.



• siis(4) driver supports:
– several SiliconImage SATA chips: SiI3124 - 4-port PCI-X,

SiI3132/3531 - 2/1-port PCIe x1;
– ATA and ATAPI devices;
– each port completely independent;
– 31 queued commands per port;
– NCQ;
– SATA Port Multipliers (with FIS-based switching);
– MSI (works only on SiI3124);
– device-initiated SATA power management;
– I/Os of any size, up to MAXPHYS;



• Refactored and turned into CAM SIM by `options ATA_CAM`
ata(4) supports:
– all legacy ATA chips;
– ATA and for most chips ATAPI devices;
– no queued commands;
– no NCQ;
– no SATA Port Multipliers (require a lot of cleanup, difficult

to keep compatibility with legacy mode);
– MSI supported for some controllers;
– I/Os of up to 512K size, depending on controller, respecting

MAXPHYS.



• ATA(4) structure
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• Kernel options:
– 8-STABLE and 9-CURRENT support both old and new

ATA stacks; 8-STABLE uses old stack by default,
9-CURRENT was recently switched to the new one.

– To use new ATA stack kernel config should include:
• device scbus
• device da
• device cd CAM
• device ...
• device pass
• device ahci
• device ata
• options ATA_CAM
• device mvs
• device siis

– devices atadisk, atapicd, atapifd, atapist, atapicam, ataraid
are not used by the new stack and should be removed.



• Kernel modules:
– devices scbus, da, cd, pass, etc are parts of the cam module.
– devices ahci, siis and mvs have own modules.
– device ata same as before consists of number of ata...

modules (ata, atapci, ataintel, ...).
– `options ATA_CAM` should be present in kernel config and

can’t be switched/loaded dynamically.



• Command equivalents:
– atacontrol list camcontrol devlist
– atacontrol cap camcontrol identify
– atacontrol reinit camcontrol reset
– atacontrol mode camcontrol negotiate
– atacontrol spindown camcontrol idle/standby/sleep
– atacontrol create/delete/... graid label/delete/...

• Device names equivalents:
– adX adaY
– acdX cdY
– afdX daY
– astX saY
– To simplify migration, adX => adaY symbolic links created

in /dev/, allowing to mount FSes by their old names without
demanding to update /etc/fstab beforehand.

– Mapping between names also reported during system boot.



• How it looks now (camcontrol devlist):

• How it looks now (dmesg):



• How it looks now (camcontrol identify):



• Performance:
– Number of random I/Os per second for different number of

threads with legacy ata(4) driver and ahci(4). Seagate
ST3320418AS on ICH10R AHCI HBA.



• Performance:
– Number of random I/Os per second for different number of

threads. gstripe of four Seagate ST3320418AS on SiI3124
HBA with SiI3726 Port Multiplier and ICH10R HBA with
and without Port Multiplier.



• As soon as ataraid(4) driver is not applicable to the new ATA
stack, RAID GEOM class was implemented to handle BIOS-
based software RAIDs.

• RAID GEOM follows modular design with APIs based on
KOBJ and consists of such parts: core, transformation
modules, metadata modules and graid(8) control tool.
– core part handles requests and events queues, geom

interoperation, etc.
– transformation modules handle different data

transformations, implementing different RAID levels. Now
implemented: RAID0, RAID1, RAID1E, RAID10, SINGLE,
CONCAT.

– metadata modules handle all vendor-specific things, such as
metadata fornats, disks and volumes management, spare
disks, etc. Now implemented: Intel, JMicron, NVIDIA,
Promise (also used by AMD/ATI) and SiI.



• Special thanks to:
– iXsystems Inc. for supporting my work;

– many FreeBSD users for feedback and hardware donations.

• Questions?


