
So you want to add a syscall?
Brooks Davis

Computer Science Laboratory
SRI International

Walla Walla, WA, USA
brooks.davis@sri.com

Abstract—Adding a new system call is notionally simple, but
there are numerous edge cases that can confuse even senior
developers. In this paper I cover the process of adding a
system call including special handing for ABI compatibility layers
like freebsd32. I also cover the extra requirements to support
upcoming CHERI-extended architectures.

I. INTRODUCTION

These days, adding as system call to the FreeBSD kernel
and libc is a relatively straightforward task, and it’s even fairly
well documented in the FreeBSD Wiki.1 Historically, it has
been a bit of a fraught process, particularly when dealing with
32-bit compatibility (e.g., i386 and amd64). This paper covers
the basics of adding a system call and explains the ins and outs
of ABI compatibility, covering both 32-bit (i386 and non-i386)
as well as 64-bit system-call support on systems that support
CHERI [2], [3].

The basic process is simple. We add a single declaration to
sys/kern/syscalls.master from which we generate
kernel function declarations, system-call table entries, and
make(1) variable declarations used to generate stubs in libc.
With declarations in hand, we add an implementation to the
kernel and a 32-bit compatibility implementation if required.
For a simple system call, all that is left is to add a manual page.
Later sections cover each of these steps along with common
exceptions from the easy path.

Where things get trickier is knowing when to add a 32-
bit compatibility implementation. Historically, even senior
developers got this wrong with surprising regularity. Today,
adding a syscalls.master entry will cause declarations
to be generated for 32-bit compatibility if required in virtually
every case so the process is streamlined. I’ll cover the various
cases that cause 32-bit compatibility to be required in the
future and the various edge cases later in this paper.

Adding support for 64-bit system calls on CHERI is both
easier and more complicated. All integer types are exactly the
same as in CheriABI [1], so some system calls don’t need
translations, but pointers are 128-bits and include bounds so
(fairly simple) compatibility wrappers are required for every
system call that takes pointer arguments or has argument types
that contain pointers.

1https://wiki.freebsd.org/AddingSyscalls

II. WHY ADD A SYSTEM CALL?

The main reason to add a system call is to access resources
the kernel controls. For example, we use a wide range of
system calls to access file systems and through them, their
underlying storage. In examining how systems calls work
below, we’ll look at one of them: pwritev(2). The pwritev(2)
system call takes an array of struct iovec pointing to
data to write to a file descriptor.

Another reason to add a system call is to allow the kernel
to act as a trusted intermediary. For example, sendmsg(2)
can be used to send a file descriptor from one process to
another over a Unix domain socket. This leads into another
reason: avoiding excessive context switches. By passing a file
descriptor, another process can access the contents of a file
directly rather than having to ask the original holder to work
on its behalf. Another example is the sendfile(2) system call
that instructs the kernel to send (some of) the contents of a
file to a network socket.

One final reason to add a system call is if an existing system
call exists but its interface is insufficient. The most dramatic
example of this is wait(2), wait4(2), and wait6(2), which are
used to implement several more wait variants.

A. Why not add a system call?

So why not add a system call. First and foremost, system
calls are forever2. FreeBSD supports most i386 binaries com-
piled against versions dating back to before the 1.0 release.
This compatibility has non-trivial cost of adding extra code to
support obsolete interfaces.

The other reason not to add a system call is that another
interface may be more appropriate. In particular, anything
managing a file or device via file descriptor might be a good
candidate for an ioctl(1) command. Management data might
make sense to provide via a sysctl(1). As a project we’re
somewhat more willing to punt on compatibility for read-only
sysctl values, but only if consumers aren’t critical.

B. How do system calls work?

Before we start adding system calls, we need to understand
how they work. As we walk through key steps, we’ll use the

2A very small number of system calls have been removed, most notably the
system calls used to implement the Kernel Scheduler Entities (KSE) threading
model in FreeBSD 5.



pwritev(2) system call as is illustrates many of the edge cases.
Its declaration is:

ssize_t pwritev(int fd, struct iovec *iovp,
u_int iovcnt, off_t offset);

C. Userspace stub

Most userspace programs call system calls by calling func-
tion stubs in libc. This insulates them from the details of the
architecture-dependent system call implementation and allow
interposition on system calls. At the very bottom of libc there
is a function prefixed with __sys_ which makes the actual
call (for most syscalls there is an _ prefixed alias and an un-
prefixed alias, the latter should be used by programs and the
former can be used in libc and libthr when an uninterposed
versions are required). On amd64, the stub for pwritev(2)
dissassembles as:

<__sys_pwritev>:
/* @generated by libc/sys/Makefile.inc */
#include "compat.h"
#include "SYS.h"
RSYSCALL(pwritev)

b8 22 01 00 00 mov $0x122,%eax
49 89 ca mov %rcx,%r10
0f 05 syscall
0f 82 b8 ed ff ff jb 138778 <.cerror>
c3 ret

The mov $0x122,%eax stores pwritev’s system call
number and syscall triggers a system call exception to enter
the kernel.

D. Kernel overview

In the kernel the trap handler is invoked leading
to syscallenter() being called to handle the sys-
tem call. It calls cpu_fetch_syscall_args() to fill
in a per-thread struct syscall_args (more on this
later). syscallenter() also performs a number of
tracing, auditing, and security operations, calls the im-
plementation (sys_pwritev() in this case), and then
calls cpu_set_syscall_retval() to update trapframe
registers for return. After syscallenter() returns,
syscallret() handles more tracing, debug interactions,
and prepares to return to userspace. Of these, the bits that
interest us mosts are return values and argument handling.

E. Return values

As return values are fairly simple, we’ll get them out of
the way first. Most system calls follow a convention where
they return 0 or a positive value on success and -1 on
error with errno set to the error value. In userspace this is
accomplished by setting an architecture specific status register
to in indicate success or failure. If failure is indicated the
cerror() function is called to retrieve the error value and
set errno. The kernel will have set the return value register(s)
for the function already.

Commonly, the kernel sets the return value register by
setting td->td_retval[0] to the return value (it is 0 by
default) with cpu_set_syscall_retval() setting the

actual register entries in the trapframe. To return an error, the
implementation simply returns a non-zero error value (e.g.,
EINVAL).

Exceptions to the trivial return pattern are the
pipe(2) system call, which returns two values via
td->td_retval[0] and td->td_retval[1] and
system calls like lseek(2) that return 64-bit values. The
latter set via td->td_uretoff.tdu_off in the normal
case. For 32-bit architectures this splits the value across two
registers automatically. There is one further twist for 32-bit
compatibility. Because the native tdu_off aliases only
td_retval[0] in the 64-bit implementation we need to
split the value up again. This is done in freebsd32_lseek
with:
off_t pos = td->td_uretoff.tdu_off;
td->td_retval[RETVAL_LO] = pos & 0xffffffff;
td->td_retval[RETVAL_HI] = pos >> 32;

F. In-kernel argument handling

Kernel argument is straight forward at its core,
but there are a number of wrinkles related to ABI
compatibility. First, let’s start with the simple case. The
cpu_fetch_syscall_args() function fills in a
struct syscall_args from values store in the trap
frame. The definition of struct syscall_args is:
struct syscall_args {

u_int code;
u_int original_code;
struct sysent *callp;
register_t args[8];

};

The code member is set to the system call number,
original_code is used for system(2) and __system(2),
callp points to the system call structure, and args holds
arguments.

In FreeBSD each argument in the args array is the size of
an native integer register (64 or 32-bits). Arguments are passed
to the implementation by casting the args array to the im-
plementation’s user argument pointer (UAP) argument, which
is a structure that aliases appropriately with the args array.
For sys_pwritev the usable members of the argument are:
struct pwritev_args {

int fd;
struct iovec *iovp;
u_int iovcnt;
off_t offset;

};

You can see its use in the sys_pwritev() implementa-
tion:
int
sys_pwritev(struct thread *td, struct pwrite_args *uap)
{

struct uio *auio;
int error;

error = copyinuio(uap->iovp, uap->iovcnt,
&auio);

if (error)
return (error);



error = kern_pwritev(td, uap->fd, auio,
uap->offset);

free(auio, M_IOV);
return (error);

}

The real implementation lies in kern_pwritev() and is
beyond the scope of this paper.

On a little-endian 64-bit system, the above declaration
of struct pwritev_args would map to the array un-
changed:
struct pwritev_args {

int fd;
args[0] 01 00 00 00 00 00 00 00

struct iovec *iovp;
args[1] 90 e9 ff ff ff 7f 00 00

u_int iovcnt;
args[2] 02 00 00 00 00 00 00 00

off_t offset;
args[3] 00 00 00 00 00 00 00 00
};

However on a big-endian system padding is required for the
32-bit members:
struct pwritev_args {

int pl0; int fd;
args[0] 00 00 00 00 00 00 00 01

struct iovec *iovp;
args[1] 00 00 7f ff ff ff e9 90

int pl2; u_int iovcnt;
args[2] 00 00 00 00 00 00 00 02

off_t offset;
args[3] 00 00 00 00 00 00 00 00
};

In practice, we always pad explicitly so the little-endian
case looks notionally like:
struct pwritev_args {

int fd; int pr0;
args[0] 01 00 00 00 00 00 00 00

struct iovec *iovp;
args[1] 90 e9 ff ff ff 7f 00 00

u_int iovcnt; int pr2;
args[2] 02 00 00 00 00 00 00 00

off_t offset;
args[3] 00 00 00 00 00 00 00 00
};

In reality the generated definitions are uglier and look like:
struct pwritev_args {

char fd_l_[PADL_(int)]; int fd;
char fd_r_[PADR_(int)];

char iovp_l_[PADL_(struct iovec *)];
struct iovec *iovp;
char iovp_r_[PADR_(struct iovec *)];

char iovcnt_l_[PADL_(u_int)]; u_int iovcnt;
char iovcnt_r_[PADR_(u_int)];

char offset_l_[PADL_(off_t)]; off_t offset;
char offset_r_[PADR_(off_t)];

};

Where the PADL_ and PADR_ macros expand as appro-
priate depending on the argument size and endianness of the
target architecture.

1) 32-bit compatibility: The implementation of 32-bit com-
patibility uses clever tricks to limit the number of wrappers
or shims that need to be written. The args array remains
an array of 64-bit arguments, but only bottom 32-bits will

ever be non-zero. This means that unsigned integer arguments
(size_t, unsigned long, etc) and even pointers require
no translation and can remain the same type in the UAP due
to the implied zero extension.

Some types do require translation. First, any signed type that
changes from 32-bit to 64-bit requires manual sign extension.
Example include ssize_t and (on i386) time_t. Next,
values that are always 64-bits such as off_t will be split
between two registers and need to be glued back together.
Finally, if a pointer points to a type whose ABI changes, the
object in question must be translated for just by the kernel.

Putting this all together, the freebsd32 UAP for pwritev
looks like this on i386:
struct freebsd32_pwritev_args {

int fd; int pr0;
args[0] 01 00 00 00 00 00 00 00

struct iovec32 *iovp;
args[1] 50 db ff ff 00 00 00 00

u_int iovcnt; int pr2;
args[2] 02 00 00 00 00 00 00 00

uint32_t offset1; int pr3;
args[3] 00 00 00 00 00 00 00 00

uint32_t offset2; int pr4;
args[4] 00 00 00 00 00 00 00 00
};

For non-i386 32-bit systems where 64-bit values must be
strongly aligned, a padding argument is also required as the
arguments are passed in aligned register pairs so the structure
actually looks like:
struct freebsd32_pwritev_args {

int fd; int pr0;
args[0] 01 00 00 00 00 00 00 00

struct iovec32 *iovp;
args[1] 50 db ff ff 00 00 00 00

u_int iovcnt; int pr2;
args[2] 02 00 00 00 00 00 00 00
#ifndef i386

int _pad; int pr3;
#endif
args[3] 00 00 00 00 00 00 00 00

uint32_t offset1; int pr4;
args[4] 00 00 00 00 00 00 00 00

uint32_t offset2; int pr4;
args[4] 00 00 00 00 00 00 00 00
};

All of this is generated automatically from the central
syscall.master entry. The freebsd32_ variants are
generated only when required as are the implementation
declarations. Putting it all together, the 32-bit compatibility
implementation looks almost identical to sys_pwritev()
with a special copyinuio implementation to make a native
struct uio from the 32-bit iovec and to glue the offset
argument back together using the PAIR32TO64 macro:
int
freebsd32_pwritev(struct thread *td,

struct pwrite_args *uap)
{

struct uio *auio;
int error;

error = freebsd32_copyinuio(uap->iovp,
uap->iovcnt, &auio);

if (error)



return (error);
error = kern_pwritev(td, uap->fd, auio,

PAIR32TO64(off_t, uap->offset));
free(auio, M_IOV);
return (error);

}

2) CHERI and 64-bit compatibility: Before we discuss
64-bit compatibility for CHERI systems, we need a brief
introduction to CHERI. CHERI is an architectural extension
that adds a new hardware type, the capability. Capabilities
grant access to regions of address space. On CHERI systems,
all accesses to memory are via capabilities, either explicitly
via new instructions or implicitly via a default data capability
(DDC) or program counter capability (PCC). CHERI capabil-
ities contain addresses, bounds, and permissions. Bounds and
permission may be reduced, but not increased and any attempt
to directly manipulate the bits of a capability in memory or
registers clears a validity tag. On 64-bit platforms, CHERI
capabilities are 128-bits in memory with a 64-bit address,
floating point compressed bounds, permissions, and with the
tag stored to the side. CHERI has been ported to Armv8,
RISC-V, and MIPS64 (now obsolete) with an early sketch for
x86_64 in progress.

CheriBSD is a fork of FreeBSD with support for CHERI.
When targeting an architecture with CHERI support, the de-
fault ABI (CheriABI) uses capabilities in place of integers for
all pointers. Further, kernel functions that access userspace use
capabilities without exception. As a result, all compatibility
ABIs must transform their integer pointers into appropriate
capabilities. Since the default ABI uses capabilities, struct
syscall_args is modified such that the ]textttargs member
takes a syscallarg_t, a new type that can hold a capability
on CHERI-aware systems and is a register_t elsewhere.
Padding requirements for compatibility ABIs are similar to
those for 32-bits, except that more padding is required due
to the larger size, and that pointer arguments require manual
handling. This means that all system calls that take pointers
require handling.

Other than pointers, CheriABI is exactly the same as
freebsd64 so that simplifies some aspects of the process.
TABLE I shows the key differences between the 4 main ABIs
FreeBSD supports.

The 64-bit compatibility implementation of pwritev() is
similar to the 32-bit one, except that we’ve added a layer of
indirection to share more code between the default, 32-bit, and
64-bit implementations with the help of a function pointer for
copyinuio():

int
user_pwritev(struct thread *td, int fd,

struct iovec * __capability iovp, u_int iovcnt,
off_t offset, copyinuio_t *copyinuio_f)

{
struct uio *auio;
int error;

error = copyinuio_f(iovp, iovcnt, &auio);
if (error)

return (error);
error = kern_pwritev(td, fd, auio, offset);

free(auio, M_IOV);
return (error);

}

Note the __capability annotation means that the iovp
pointer is a capability even in a hybrid kernel (where only se-
lect pointers are capabilities). With this extra bit of indirection
sys_pwritev() becomes:
int
sys_pwritev(struct thread *td,

struct pwritev_args *uap)
{

return (user_pwritev(td, uap->fd, uap->iovp,
uap->iovcnt, uap->offset, copyinuio));

}

and freebsd64_pwritev() is:
int
freebsd64_pwritev(struct thread *td,

struct freebsd64_pwritev_args *uap)
{

return (user_pwritev(td, uap->fd,
(struct iovec *__capability)
__USER_CAP_ARRAY(uap->iovp, uap->iovcnt),
uap->iovcnt, uap->offset,
freebsd64_copyinuio));

}

This differs from sys_pwritev() in that a capability
must be created (here we use the __USER_CAP_ARRAY
macro, which sets bounds on an array when the type
is known along with the number of elements) and
freebsd64_copyinuio() is passed as the copyin()
function. The essential change vs 32-bit compatibility is the
derivation of a capability to the struct iovec64 array.

III. ADDING A SYSTEM CALL

As outlined in the introduction, the actual process of
adding a system call is straightforward. We declare it in
syscalls.master, run a script to update generated files
for relevant ABIs, add an implementation, any userspace bits,
and a manual page.

A. syscalls.master and generated files

The first step in the process is to define the system call
interface and declare it in sys/kern/syscalls.master.
First, we’ll discuss the entry for pwritev(2):
290 AUE_PWRITEV STD|CAPENABLED {

ssize_t pwritev(
int fd,
_In_reads_(iovcnt)
_Contains_long_ptr_
struct iovec *iovp,
u_int iovcnt,
off_t offset

);
}

The core of the declaration declares the arguments and the
return value with C function declaration syntax. On the first
line we see the number 290, which is the system call number
used in the userspace stub (there disassembled as 0x122).
How should you choose a system-call number? If the system
call will be added to FreeBSD directly, you should add it to the



ABI feature i386 Other 32-bit 64-bit CheriABI
long size 32-bit 32-bit 64-bit 64-bit
time_t size 32-bit 64-bit 64-bit 64-bit
uint64_t alignment 32-bit 64-bit 64-bit 64-bit
void * alignment 32-bit 32-bit 64-bit 128-bit

TABLE I
KEY DIFFERENCES BETWEEN ABIS IN FREEBSD AND CHERIBSD

end of the list incrementing the maximum system-call number.
If it will be used locally, you can use any of the system call
entries marked with RESERVED. Should you need to add more
local system calls than RESERVED permits, there may be other
COMPAT calls you could reuse or you could ask the project to
add more reserved entries. If you need to duplicate the whole
set of system call for some reason, starting over at 1000 is
likely enough.

The AUE_PWRITEV entry is the audit type. Audit entries
are allocated by the OpenBSM project.3 For system calls
that do not require auditing AUE_NULL may be used. The
STD|CAPENABLED field says that this is a standard (always
present) system call and that it is allowed to operate in
Capsicum capability mode. It is allowed in capability mode
because it uses no global namespaces, only file descriptors.

In addition to ordinary function declaration syntax, we
use two types of annotations for pointer arguments. First,
_In_reads_(iovcnt) indicates that we read iovcnt
struct iovec objects from userspace. This Microsoft SAL
annotation describes the 1st-order memory footprint of the sys-
tem call, and is useful for generating system-call trace frame-
works or interposers. Second, _Contains_long_ptr_ in-
dicates that the objects contains long values (e.g., ssize_t)
and pointers. This allows ABI compatibility descriptions to
be generated. The subset of SAL that we use as well as
the _Contains_ values are described in comment at the
top of syscalls.master along with other values such as
alternatives to STD.

Once an entry is added, you can run make sysent at the
top of the source tree (you may need to build world first).
This will update generated files. For the default ABI this set
of files and their purposes are listed in table II

Compatibility ABIs have a corresponding set of files minus
syscall.mk since the set of syscalls is the same in all
FreeBSD ABIs. This differs from Linux, where each ABI
starts with system call numbers aligning with the most popular
Unix implementation at the time of the port.

B. Main implementation

Once you’ve run make sysent, you can add a
sys_foo() implementation. If it’s a STD syscall, the file
must always be compiled in. For optional system calls (e.g.,
the audit or mac frameworks), current practice is always to
add the system-call table entry, but have the implementation
return ENOSYS when the option isn’t enabled. For example,
when the kernel is compiled without the AUDIT option, the
implementation of auditctl(2) is:

3https://github.com/openbsm/openbsm

int
sys_auditctl(struct thread *td,

struct auditctl_args *uap)
{

return (ENOSYS);
}

Another convention is that most system calls have
mostly trivial sys_foo() implementation, which calls
kern_foo() to implement the actual system call. This is
useful for compat system calls where a freebsd32_foo()
calls into the actual implementation.

C. 32-bit compatibility

If make sysent modified freebsd32_proto.h then
the system call needs a compatibility implementation.
If you’ve used _Contains_ annotations correctly and
not used any always-64-bit types other than dev_t,
id_t, or off_t then the tool used by make sysent
(sys/tools/makesyscalls.lua) will generate declara-
tions and system-call table entries for freebsd32_foo()
if it is required.

D. 64-bit compatibility

As with 32-bit compatibility, make sysent will gener-
ated declarations for freebsd64_foo() functions as re-
quired. As discussed above, 64-bit compatibility on CheriBSD
is similar to 32-bit compatibility except that long type are
the same size and capabilities need to be derived from integer
pointers using __USER_CAP macros. While it’s possible to
just use __USER_CAP_UNBOUND to derive a pointer to the
whole program address space (as determined by the thread’s
DDC), it’s better practice to use argument information to
bound pointers. In some cases this can protect against bugs in
the kernel or userspace despite the 64-bit program not using
capabilities directly.

E. Userspace bits

For most systems calls, the entries in syscalls.mk en-
sure that appropriate functions are generated in libc. All that is
required is to add them to lib/libc/sys/Symbol.map.
Entries in the Symbol.map file should be added to a per-
major-release block (for FreeBSD 14 this is FBSD_1.7).
Only the main system call name should be added not the _foo
or __sys_foo symbol.

Some system calls do require some userspace implemen-
tation. For example, the exit() function calls a number
of cleanup and teardown routines before install calling the
_exit() system call stub. The default behavior is overridden
in lib/libc/sys/Makefile.inc by adding exit.o to



File Purpose
sys/kern/init_sysent.c declares system call table
sys/kern/syscalls.c number to name translation table
sys/kern/systrace_args.c tracing
sys/sys/syscall.h name to number macros (e.g., SYS_pwritev)
sys/sys/syscall.mk list of object files in MIASM variable
sys/sys/sysproto.h kernel prototypes (e.g., sys_pwritev(), struct sys_pwritev_args)

TABLE II
GENERATED SYSTEM CALL FILES

NOASM, disabling the default stubs and adding _exit.o to
PSEUDO enabling a reduced stub.

In addition to any libc implementation details, a manpage
should be added (usually under lib/libc/sys) and an en-
try added to the MAN2 variable to enable it. Writing manpages
is beyond the scope of this paper, but starting with a manpage
from a simile system call is usually a good place to start.

IV. CONCLUSIONS AND GUIDANCE FOR NEW SYSTEM
CALLS

Having read this paper, the reader should be ready to
add a new system call (subject to understanding the sub-
system(s) it interacts with). The process of adding system
calls is increasingly standardized with guardrails provided by
gensyscalls.lua. Before you apply your new knowledge,
I encourage you to think long and hard about whether a system
call is actually required. Once you’ve concluded it is, make
sure to seek review early and often. System calls are forever,
so it’s important to make sure they have the right interface
before they make it into a release or the critical path of the
boot process.

REFERENCES

[1] B. Davis, R. N. M. Watson, A. Richardson, P. G. Neumann, S. W.
Moore, J. Baldwin, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka,
A. Joannou, B. Laurie, A. T. Markettos, J. E. Maste, A. Mazzinghi, E. T.
Napierala, R. M. Norton, M. Roe, P. Sewell, S. Son, and J. Woodruff.
CheriABI: Enforcing valid pointer provenance and minimizing pointer
privilege in the POSIX c run-time environment. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, pages
379–393, New York, NY, USA, 2019. ACM.

[2] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, G. Barnes, D. Chisnall, J. Clarke, B. Davis,
L. Eisen, N. W. Filardo, R. Grisenthwaite, A. Joannou, B. Laurie,
A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis, R. Norton,
A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architec-
ture (Version 8). Technical Report UCAM-CL-TR-951, University of
Cambridge, Computer Laboratory, October 2020.

[3] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. The CHERI
capability model: Revisiting RISC in an age of risk. In Proceedings of
the 41st International Symposium on Computer Architecture (ISCA 2014),
June 2014.


