Flash subsystem for NetBSD

Device drivers for NAND flash memory

Adam Hoka
The NetBSD Foundation
Flash memory

- NOR flash
 - Random r/w access, execute-in-place capability
 - Small storage size, expensive
- NAND flash
 - Cheap, high storage capacity
 - No random access possible, unreliable
 - Very common in embedded devices
NAND flash memory

• Read and write are on a per page basis
 – e.g. 2048 bytes for large page NAND

• Writing needs an erase operation first

• Erase is on a per block basis
 – e.g. 64 pages is a block and thus 128kbytes

• Blocks age, and become unusable over time
 – “Bad blocks” need to be marked

• Needs ECC because of this aging
NAND flash architecture

- 128K Pages (=4,096 Blocks)
- 1 Block = 32 Pages = (8K + 256) Word
- 1 Page = 264 Word
- 1 Block = 264 Word x 32 Pages = (8K + 256) Word
- 1 Device = 264 Words x 32 Pages x 4096 Blocks = 528 Mbits

Diagram:
- 256 Word
- 8 Word
- Page Register
- I/O 0 ~ I/O 15

16 bit
Where do we find NAND?

- Embedded boards (ARM, MIPS, etc)
- Smart phones
- Portable music players
- PC motherboards (BIOS)

- The first two is important for us, because we want to support NetBSD on those devices.
An example of an ARM board
“Prior art”

- Linux MTD
 - Supports many devices, but horrible code

- U-boot MTD
 - Almost the same as Linux, except better quality

- Andrew Turner's NAND Driver (FreeBSD)
 - 8bit devices only, limited feature support
Flash device hierarchy in NetBSD

- **Device specific driver**
 - implements the NetBSD nand(4) API

- **nand(4) driver**
 - Uses functions exported from the device specific driver to communicate with the NAND chip using ONFI standard commands
 - Implements the flash(4) API

- **flash(4) driver**
 - Provides a high level API for the flash file system and a block device interface through /dev/flash*
Why is it better than Linux MTD?

• Implemented using industry standard ONFI NAND commands and specifications
• Clear interface and understandable code path (mtd is a spaghetti monster)
• Designed for modern devices, no legacy code
Configuration example

NAND controller
omapnand0 at gpmc? addr 0x30000000

NAND layer
nand0 at omapnand0

Define FLASH partitions for board
flash0 at nand0 offset 0x0 size 0x80000 readonly 1
flash1 at nand0 offset 0x80000 size 0x80000 readonly 1
flash2 at nand0 offset 0x260000 size 0x200000
flash3 at nand0 offset 0x280000 size 0x400000
flash4 at nand0 offset 0x680000 size 0x0
The state of implementation

• What’s finished?
 – NAND commands (standard ONFI 2.3)
 – Block device driver
 – Partition support
 – ECC error checking support
 – flashctl(8), a tool to manage flash devices

• What needs to be done?
 – Bad block handling needs improvement
 – Test on more hardware and bugs to find and fix
The Project named “TÁMOP-4.2.1/B-09/1/KONV-2010-0005 – Creating the Center of Excellence at the University of Szeged” is supported by the European Union and co-financed by the European Regional Fund. www.nfu.hu
Thank you for listening!
Visit http://chewiefs.sed.hu/ for more information
Any questions?