

It's a Bug's Life
Some musings on software bugs

Ian Dowse
Ian.Dowse@corvil.com
iedowse@FreeBSD.org

Eötvös Loránd Tudományegyetem,
Budapest, Hungary
November 20, 2010

Overview

● Background
● Panic
● Bug probability space
● Bug finding pitfalls
● Some special bug types
● Q&A

Background
● School of Mathematics, Trinity College Dublin

● Around 1995-2000, many servers moved from
commercial Unix to FreeBSD on PCs

● Early days of FreeBSD, busy systems, lots of users
– And we started seeing occasional kernel panics.
– Many repeated crash patterns, and we tracked down and

fixed quite a few bugs

● Work now in Corvil Ltd.
● High performance, high tech latency management

systems deployed in modern trading environments
– During development, see very similar bug patterns

Panic: vrele negative ref cnt

Panic: vrele negative ref cnt
● Sept 1998 in Maths TCD we start seeing these panics

● Means that vnode reference count has gone negative
– Many many places in the kernel update vnode refs, so hard to debug

● Some patterns emerged though
– Mostly panic occurred on process exit on CWD vnode, always NFS

– 1000+ users but dwmalone was convinced the problem was
sometimes triggered by him logging out or sending mail

● Eventually tracked it down
– An incorrect vrele() call in the NFS filesystem when handling

errors in the link() operation
– Turned out dwmalone's mail client was attempting a cross-device

link() on his NFS home directory, when sending mail, so the
kernel did one vrele() too many

– Then when he logged out, *BAM*

Panic: vrele negative ref cnt
● The bug itself isn't particularly interesting, but some of the

patterns are:

● Right from the start there was more information than it
seemed
– There were many other FreeBSD bugs at the time, but this one

caused maybe 95% of panics we saw

– The problem began with an upgrade but we didn't notice
– The correlation with logging out seemed unlikely, but was real

– A few of the panic dumps actually had the NFS link() operation in
the stack trace but we didn't make the connection

● Everything about the panics made sense afterwards
– When it started happening, when it triggered, and why it was

almost always during logout
– Even the probable root cause of the bug became obvious (the

VOP_LINK man page contained incorrect information)

Bug probability space

Bug probability space

● Some bugs are certain (e.g. a crash is guaranteed every time)

● Some bugs are actually impossible to trigger
● For example surrounding code prevents execution of the problematic

case or operation

● Most remaining bugs are relatively rare
● This has one quite interesting implication: the most commonly

occurring bug will typically trigger far more often than the next most
common one, e.g. 5 or even 100 times more often

● Of course the actual occurrence rate depends on usage
patterns, so can be site-specific, user-specific etc.

p=1 p=0p=0.1 p=0.01 p=0.001

Bug probability space

● Certain (p=1) bugs are very common during development
● Running any tests at all will catch these (e.g. does the program or

system still work at all after the code change?)

● You'll often find impossible (p=0) bugs when tracking down a
problem.
● It's easy to then think you've fixed the real problem but in fact you

won't have changed the overall situation at all in practice

● Remember there are (generally) always more bugs out there
● Need to be sure that the bug you fix is actually the one causing the

main problem

p=1 p=0p=0.1 p=0.01 p=0.001

Bug finding pitfalls

Ah, this must be it!

● After hours of searching for a bug, it's really easy to convince
yourself that you've finally found it
● Especially if you find what looks like a problem in related code, or find

a problem that could confuse state or corrupt memory

● In many (most?) cases you actually get it wrong
● Maybe you've just found an impossible bug or a much less likely one

● Need to be really sure the apparent bug matches the problem
● Even obscure memory corruption bugs often cause surprisingly

consistent crash patterns

● Humans maybe just aren't very good at finding bugs!

p=0p=0.1 p=0.01 p=0.001

How did this ever work?!

● Some bugs involve code that is blatantly wrong
● Typos, cut & paste errors

● Misplaced braces or semicolons

● Uninitialised variables

● Access past the end of an array or allocation

● Makes you wonder how the code ever worked at all

● Easy to forget to be logical when you find these
● Just want to get rid of that awful mistake

● Fixes for this class of bugs actually cause a surprising number
of fallout problems

if (error) ;
 return (-1);

But how did it really ever work?

● One of the most interesting sides of bug fixing
● You think “all bets are off”, “all hell will break loose” if code like this

executes

● But computers of course just continue logically

● If it did seem to work before, you can find out how and why
● Maybe that code is never executed or nothing uses the results?

● Maybe the compiler happened to use the same CPU register for the
value you wanted and the uninitialised variable you actually used?

● Maybe the corrupted memory is in practice “safe” to corrupt?

● Leads to a real sense that the bug is fully understood
● And frequently to remarkably simple “how to repeat” steps

if (error) ;
 return -1;

Use the core dump

● Core dumps often appear to contain no useful information
● The crash may occur long after the bug triggered

● Maybe you don't have an executable with debugging symbols

● A bit of knowledge about assembly language, calling
conventions and registers helps a lot
● Even without debugging symbols you can find function arguments, local

variables, structure contents etc.

● Often later after you've found the bug, you realise there was
actually direct evidence of the problem in the core dump(s)
● It's useful to remember this every time you start looking at a new bug

Some special bug types
(suggested by work colleagues)

The load-bearing bug

● You fix the bug and everything falls apart
● E.g. A bug preventing a buggy optimisation from ever being applied

Small or far away?

● Some bugs are small

● Some are far away

(Reference to Father Ted series)

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

