
GEOM_VIRSTOR

Or: how to fool yourself into thinking
that you don't have to worry about

buying more hard drives

Ivan Voras <ivoras@freebsd.org>

Google Summer of Code project, 2006 ; Mentor: Pawel Jakub Dawidek <pjd@freebsd.org>

5/2/07 #2

What is GEOM_VIRSTOR?

● Disk storage "overcommit" GEOM class
● Allows you to:

– Create a huge virtual hard drive, backed by
arbitrary number of small(er) hard drives

– Add drives to the "virstor" device when you need
them

● Usage:
– Create a huge (multi-TB) file system on a 100 GB

hard drive, add more hard drives when you need
the space

5/2/07 #3

What's it for?

● The basic purpose is storage virtualization,
literally :)

● Avoids the need for growfs
– but there are consequences...

● It's generic, and usable with any file system
(ufs, msdosfs, ext2fs)
– Perversion: create a RAID array on top of it...

● It's been created before ZFS, which has a much
nicer way to extend storage

5/2/07 #4

How does it work?

● First step: label components to belong to
gvirstor, specify virtual size
– This will initialize the allocation table on the first

component
– All space divided into chunks (default size: 4 MB)

● Bringing the geom up will create a
/dev/virstor/foo device of specified
(virtual) size

● Writing to /dev/virstor/foo will
sequentially allocate space from components

5/2/07 #5

Operation (BIO_WRITE case)

BIO_WRITE for
address x

Find provider n
holding y

Route I/O
to provider n

Allocate chunk
at provider n

Sync alloc.
table

Translate x to
chunk #y

Route I/O
to provider n

y has physical
backing?

yes no

5/2/07 #6

The allocation table

● Holds one entry per virtual chunk

int16 flags int16 prov_no int32 chunk_no . . .

● Stored at the start of the first provider
– (in a continuous set of chunks)

● Only BIO_WRITE requests can allocate new
chunks (if needed)
– BIO_READ on address without physical backing

returns zeroes

5/2/07 #7

Implementation

● Simple / non-threaded GEOM class
● Allocation table is always written synchronously

– (i.e. before BIO_WRITE is marked as completed)
● Keeps track of chunk usage

– Blocks BIO_WRITE requests if there's no physical
storage (drives) available to allocate from

– Notifies admin via kernel message
● Allows "hot" insertion of new drives

– Hot removal also, but only if no blocks allocated
and it's the last drive

5/2/07 #8

Limitations

● Applications that want to be "smart" about
storing data sequentially on a drive are
defeated
– Canonical example: UFS cylinder groups
– The point of having cgs is for them to be spread

across the (physical) drive, to "group" data
– After newfs is done, all cylinder groups (superblock

backups, inode & block tables) will (physically) be
stored almost sequentially on the first drive in virstor

– Big fragmentation problems

5/2/07 #9

Ideas / future work

● Implement moving allocated chunks from one
drive to other drives (to clear that drive from
allocated data)

● Implement removing drives from the middle of
the virstor set

● ... ?
● Current status: waiting to be committed to

-CURRENT

5/2/07 #10

The End

● Thanks:
– To FreeBSD Foundation for funding the trip to

BSDCan
– To Google for sponsoring the project & part of the

expenses here
– Pawel & many other people for helping create

gvirstor
● Questions?

Contact: Ivan Voras <ivoras@freebsd.org>Contact: Ivan Voras <ivoras@freebsd.org>
Project homepage: Project homepage: http://wiki.freebsd.org/gvirstorhttp://wiki.freebsd.org/gvirstor

