
TCP/IP interception
Or, “You want to do what with my data?”

Adrian Chadd <adrian@FreeBSD.org>

mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org


Why?

• Lots of “interception” is going on as part of 
service delivery

• Is “good enough” but most get it subtly 
wrong

• (And then blame Squid)

• I’d like FreeBSD to get it “right”



Hijacking 101

• Lots of places to “hijack” traffic

• The interesting bits - flow interception, local 
interception

• Two major kinds of networks

• service provider

• content provider



CP Hijacking
1. Client makes request.

2. Request travels across
internet to destination.

3. Some device in the path
redirects the traffic to another

server.

4. Server makes connection
back to origin if required.



SP Hijacking
1. Client makes request.

4. Request travels across
internet to destination.

2. Some device in the path
redirects the traffic to another

server.

3. Server makes connection
back to origin if required.



Differences?

• CP server farms are generally very simple - 
small number of links to the internet, clients 
are all remote, servers are all local

• SP networks are more complicated - you 
may want to hijack connections between the 
internet and your clients; clients and the 
internet; clients and your local servers; 
internet and your local servers..



Practical Hijacking
• Get packet stream to server somehow!

• Inline; SLB; L{>=3} switch; policy 
routing; ECMP; WCCPv2

• Server intercepts TCP/IP connection not 
destined for itself (ipfw fwd, etc); creates 
PCB, etc;

• Software treats it as a normal incoming TCP/
IP with a strangely remote “local” socket 
name



Problems with Hijacking
• All the UNIXes ship with enough to do 

server-side hijacking (ie, incoming 
connections)

• Outgoing connections still look like they 
originate via the server, not the original 
client

• Everyone gets TCP options, PMTU and MSS 
all wrong; ECN isn’t so bad these days

• The workarounds are annoying!



Hijacking: ECN
• ECN has been around a long time; reused 

bits in header

• Linux had ECN support for quite a while

• Clients didn’t!

• Some firewalls treated ECN as “should be 0” 
and dropped ECN packets on the floor

• Clients could talk fine; intercepted 
connections via Linux proxies couldn’t..

• Workaround: disable ECN.



Hijacking: MSS

• Negotiated MSS on outgoing connections is 
not the same as the incoming connection

• Which is not a big deal in itself

• Many CPE’s “negotiate down” the MSS to 
bypass tunnelling MTU related issues 
(PPPoE, bad MPLS, IP/GRE, IPSEC)

• .. and this leads to..



Hijacking: PMTU
• .. PMTU requires ICMP to function correctly

• Hijacking connections generally involves 
intercepting TCP and NOT ICMP

• .. so all kinds of hilarity follows

• not specific to intercepted client traffic!

• Workaround: disable PMTU on server; 
clamp connection MSS to something low; 
pray.



Hijacking: Options
• Client-side options differ from FreeBSD-side 

options

• Especially in FreeBSD-7.0

• Specific option in question: TCP MSS

• Some routers/etc just zero the TCP MSS 
field

• Both sides of the connection mis-negotiate 
TCP MSS; hilarity follows

• Workaround: disable TCP MSS, cry.



Client-side spoofing?
• TPROXY (linux)

• Julian’s patch set (in perforce somewhere)

• Allow for outgoing TCP/IP connections with 
a non-local “local” bind()

• Things which assume end-to-end stay happy

• Client and server have no idea there’s 
something in the middle..

• .. or do they?



Client-side spoofing
• How it works:

• (compile kernel with stuff)

• fd = socket(normal stuff);

• ipfw rule to push non-local packets 
through a PCB lookup (eg, ipfw uid..)

• setsockopt(fd, IPPROTO_IP, 
IP_NONLOCALBIND, “yes”);

• bind(fd, “non local address”) = OK



Problems!

• It assumes symmetric traffic flows

• Similar to traditional interception - PMTU, 
MSS, Options

• Other things may differ - SACK/
Timestamps, ensuring source/dest ports 
match (TPROXY + Squid doesn’t do this!)



Current Plans
• Document the “how hijacking is done 

wrong” cases somewhere public

• Integrate Julian’s client spoofing patches into 
-current

• Release Squid as an example use case 
(already has the logic for TPROXY)

• Tidy up my “TCP proxy” as a simple 
example for interception testing

• Investigate TCP/IP “de-splicing”



TCP/IP “desplicing” ?
• Track TCP FSM on packets passing by

• Wait until an entire connection setup is seen 
that you care about

• Create two sockets - client and server - 
setup relevant PCBs; return to userland

• Bypasses the “symmetry” issue - asymmetric 
paths are never intercepted

• Just count the sessions you couldn’t 
hijack



TCP/IP desplicing issues

• Problems (that I can think of)

• Unknown Options?

• What else? You tell me!



Questions?



Thankyou!
Adrian Chadd <adrian@FreeBSD.org>

mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org

