
May 2009   · 1

Harrison Zou
FreeBSD Developer Summit

May, 2009



May 2009   · 2

Agenda

• Introduction of RMI Corporation

• Briefing on Multicore Multithreading 
Processor Architecture

• Software Considerations and FreeBSD Port 



May 2009   · 3

InfrastructureInfrastructure

EnterpriseEnterprise

SMB andSMB and
Home NetworksHome Networks

Broadband Access Gateway
Secure Wireless Router
Network Attached Storage
Security Appliances
Network Video Recorder
General Purpose Control 
Processing

Enterprise Switches and Routers
Security Appliance
Storage Appliances
Cloud Computing
Data Center Ethernet
Server Acceleration
WLAN Switches and APs

WiMax ASN Gateway
Service Provider Routers
Security Appliances
Server Load Balancing
LTE Channel Card
GGSN and SGSN
Base Station Controller (BSC)

Application ExamplesApplication Examples ThroughputThroughputXLx XLx 
ConfigurationConfiguration

100Mbps-4Gbps1 – 2 Cores

2Gbps-40Gbps2 – 8 Cores

10Gbps – 160Gbps4 – 32 Cores

XLx Applications – End-to-end Solutions



May 2009   · 4

Motivation of Multicore Network Processor
• Increasing Network throughput
• Increasing Processing cycle per packet
• Increasing Performance per watt per dollar
• Emerging Network Applications
• C Programmable

NetworkNetworkNetwork

StorageStorageStorage ApplicationApplicationApplication MultimediaMultimediaMultimedia

Service CloudService Cloud

Packets TrafficPackets Traffic Packets TrafficPackets Traffic

Single Core Boundary Single Core Boundary 

Process CyclesProcess Cycles

Network ThroughputNetwork Throughput



May 2009   · 5

The Challenges of Multi-core
• Multi-core design has become mainstream

– Tremendous success… many scalable, high performance systems 
are shipping in production today…

– … but, not all multi-cores are created equal

• Primary development issues
– Software migration from single- to multi-core

– Meeting the market demand of high performance
• Translating CPU horsepower into delivered performance
• Inevitable consequences of large memory footprints
• Unexpected demand for CPU resources grinds system to a halt

– Achieving system level scaling
• Devise unified hardware and software architecture for an entire family of 

products
• The problem of maintaining multiple code bases



May 2009   · 6

The Challenges of Delivered Performance

• Multicore SOC’s face a major challenge: device driver has 
become a major overhead
– Driver overhead becomes overwhelming with large CPU core 

counts and high-speed peripherals
• Traditional peripherals do not scale with high CPU count due to 

synchronization and interrupt overhead
• Even the most advanced CPU core will deliver poor system-level 

performance – due to bottlenecks to its peripherals
• This problem requires a revolutionary on-chip interconnect

– RMI architecture features Fast Messaging Network to address this
issue

• Conserves CPU cycles for real application, instead of driver overhead

• Net result: maximum delivered performance using RMI 
architecture



May 2009   · 7

Key Architectural Differentiation

Fine-Grained Multi-Threading MIPS64 Multi-CoreFineFine--Grained MultiGrained Multi--Threading MIPS64 MultiThreading MIPS64 Multi--CoreCore

Fast Message NetworkFast Message NetworkFast Message Network

Superscalar OOO MT MIPS64 Multi-CoreSuperscalar OOO MT MIPS64 MultiSuperscalar OOO MT MIPS64 Multi--CoreCore

Central Message SwitchCentral Message SwitchCentral Message Switch
Next GenerationNext Generation

Current ProductCurrent Product



May 2009   · 8

Fine Grained Multithreading
• Each CPU core contains four full-

fledged CPU’s

• We call them threads or vCPUs
– Each one has its own unique 

register set
– OS’s and Applications see each 

one as an independent CPU  
– For example, Linux comes up as 

32-way SMP in an 8-core XLR

• It’s done in hardware
– Switch from one vCPU to another 

every single cycle  
– The context switch is immediate 

without cycle loss

Instruction scheduler

Execution
pipeline

Thread 4Thread 4
Full Architecture features 

of MIPS64 CPU
(general purpose registers, 

Interrupt, exception 
handlers )

Thread 3Thread 3
Full Architecture features 

of MIPS64 CPU
(general purpose registers, 

Interrupt, exception 
handlers )

Thread 2Thread 2
Full Architecture features 

of MIPS64 CPU
(general purpose registers, 

Interrupt, exception 
handlers )

Thread 1Thread 1
Full Architecture features 

of MIPS64 CPU
(general purpose registers, 

Interrupt, exception 
handlers )

CPU Core



May 2009   · 9

Benefits of Multithreading
• Improves performance by 

hiding memory latency 
– When one vCPU (thread) 

stalls, the next one takes 
over

– CPU usage is maximized

• Without threading, CPU’s 
will stall out

• vCPU’s (threads) consume 
much less area and power at 
a given performance level

Single CPU - Single Thread

Single CPU - Four Threads

Performance Improvement

Memory
Latency

Processing

Memory
Latency

Memory
Latency

Memory
Latency

Time

Thread 2

Thread 3

Thread 4

Thread 1

4 threads in parallel takes much less time 
to complete 4 tasks by utilizing cycles 
otherwise wasted on memory latency. 

4 threads in parallel takes much less time 
to complete 4 tasks by utilizing cycles 
otherwise wasted on memory latency. 



May 2009   · 10

Memory Latency – Now a Primary Issue

• Real-life networking and security applications typically require 
a large memory footprint
– Memory latency becomes the killer
– Highest frequency CPU does not solve this problem

• However, RMI architecture experiences little drop in 
performance 
– Multithreading effectively hides memory latency

Intel XeonXLS 1 Core

10 K Route Entry

Two Route Entry

Route Table Size

66% 66% 
dropdrop

Only Only 
10% 10% 
dropdrop

Real carrierReal carrier
NetworkNetwork
TypicallyTypically

has >200K has >200K 
routesroutes



May 2009   · 11

Thread Scaling within A Single Core

0 1 2 3 4
Number of Threads EnabledNumber of Threads Enabled

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce



May 2009   · 12

Fast Messaging Network Overview

• FMN is an on-chip interconnect designed specifically 
for passing messages between CPUs and 
peripherals
– Light-weight software driver

• RMI-specific instructions for sending/loading FMN messages
• Few instructions to send (or receive) a message

– Prevents unnecessary context switches
• FMN provides interrupt-free method to receive message arrival 

notification
– Lockless

• Hardware buffers are reserved for each sender
• As such, multiple senders can simultaneously transmit at each 

cycle.  No need for software synchronization
– High bandwidth on core clock frequency
– Very low latency (ns)



May 2009   · 13

Benefits of FMN *
• Enables linear scaling with number of CPU 

cores
– Amdahl’s law implies that locks  limit 

performance regardless of CPU resources
– FMN removes locks associated with device 

drivers

• Preserves CPU cycles for application 
processing, rather than interfacing with 
peripherals

– Traditional NIC card requires CPU to spend a lot 
of time on driver code to access descriptors - up 
to 100 instructions

– FMN designed to tightly integrated with software.  

• Further improves performance by saving 
memory accesses and reducing memory 
footprint

– CPU read/write message queues work without any 
memory access

– Result: reduced pressure on the memory and 
cache subsystem, and

– Increased application performance by minimizing 
overall memory latency

0 1 2 3 4 5 6

Performance

7 8

Linea
r s

ca
lin

g w
ith

 FMN

Traditional design’s 
performance

limited by synchronous lock

Number of CPUs

* FMN = Fast Messaging Network, 
unique to RMI architecture



May 2009   · 14

Performance Scaling with Multiple Cores 

0 1 2 3 4 5 6 7 8
Number of CoresNumber of Cores

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce



May 2009   · 15

Straightforward Approaches to Migration

• SMP OS’s automatically take 
advantage of multiple vCPUs. 

• RMI architecture features FMN/CMS 
together with Intelligent Network 
Accelerator to distribute workload to 
multiple vCPUs

• Control path and Data path are easily 
partitioned and managed

• Multiple data planes run on an 
independent set of flows or pipelined 
no needs for synchronization

Single CPUSingle CPU

Control 
Plane

Data 
Plane

vCPU 1vCPU 1vCPU 0vCPU 0

Control 
Plane

Data 
Plane

Packet Distribution EnginePacket Distribution Engine

NetworkNetwork
Port 1Port 1

NetworkNetwork
Port 0Port 0

vCPU nvCPU n

Data 
Plane

NetworkNetwork
Port XPort X

MultipleMultiple
IndependentIndependent

FlowsFlows

Fast Messaging NetworkFast Messaging Network

……

……



May 2009   · 16

XLR® Processor Architecture

RGMIIRGMII RGMIIRGMII RGMIIRGMII RGMIIRGMIIXGMIIXGMII
SPISPI--4.24.2

Fast Messaging Network (FMN)Fast Messaging Network (FMN)

XGMIIXGMII
SPISPI--4.24.2

Network Acceleration EnginesNetwork Acceleration Engines

HTHT PCIPCI--XX 11 22 33 44

SecuritySecurity
EnginesEnginesDMADMA

M
em

or
y 

an
d 

I/O
 B

rid
ge

M
em

or
y 

B
rid

ge

D
D

R
2 

D
R

A
M

C
on

tr
ol

le
r D

R
AM

D
ua

l-C
ha

nn
el

s

Q
D

R
/L

A
1

C
on

tr
ol

le
r 

G
en

er
al

Pu
rp

os
e 

I/ORR
SS
AA

vCPU0vCPU0
vCPU1vCPU1
vCPU2vCPU2
vCPU3vCPU3

I/O Distributed Interconnect (IODI)I/O Distributed Interconnect (IODI)

L1L1--II L1L1--DD

Core 0Core 0

vCPU4vCPU4
vCPU5vCPU5
vCPU6vCPU6
vCPU7vCPU7

L1L1--II L1L1--DD

Core 1Core 1

vCPU8vCPU8
vCPU9vCPU9

vCPU10vCPU10
vCPU11vCPU11

L1L1--II L1L1--DD

Core 2Core 2

vCPU12vCPU12
vCPU13vCPU13
vCPU14vCPU14
vCPU15vCPU15

L1L1--II L1L1--DD

Core 3Core 3

vCPU16vCPU16
vCPU17vCPU17
vCPU18vCPU18
vCPU19vCPU19

L1L1--II L1L1--DD

Core 4Core 4

vCPU20vCPU20
vCPU21vCPU21
vCPU22vCPU22
vCPU23vCPU23

L1L1--II L1L1--DD

Core 5Core 5

vCPU24vCPU24
vCPU25vCPU25
vCPU26vCPU26
vCPU27vCPU27

L1L1--II L1L1--DD

Core 6Core 6

vCPU28vCPU28
vCPU29vCPU29
vCPU30vCPU30
vCPU31vCPU31

L1L1--II L1L1--DD

Core 7Core 7

Memory Distributed Interconnect (MDI)Memory Distributed Interconnect (MDI)

Banked 2MB LevelBanked 2MB Level--2 Cache2 Cache

EJTAG

I2C

PCMCIA

Flash

GPIO

UART

Debug

Misc

EJTAG

I2C

PCMCIA

Flash

GPIO

UART

Debug

Misc

PI
C

PI
C



May 2009   · 17

COMPCOMP

SGMIISGMIISGMIISGMII

XLS® Processor Architecture

SGMIISGMII SGMIISGMII SGMIISGMII RGMIIRGMII
/SGMII/SGMIISGMIISGMII

Fast Messaging NetworkFast Messaging Network

SGMIISGMII

Network Acceleration EnginesNetwork Acceleration Engines

PCIePCIe USBUSB 11

DMADMA

M
em

or
y 

an
d 

I/O
 B

rid
ge

M
em

or
y 

B
rid

ge

D
D

R
2 

D
R

A
M

C
on

tr
ol

le
r D

R
AM

D
ua

l-C
ha

nn
el

s
G

en
er

al
Pu

rp
os

e 
I/O

vCPU0vCPU0
vCPU1vCPU1
vCPU2vCPU2
vCPU3vCPU3

I/O Distributed InterconnectI/O Distributed Interconnect

L1L1--II L1L1--DD

Core 0Core 0

vCPU4vCPU4
vCPU5vCPU5
vCPU6vCPU6
vCPU7vCPU7

L1L1--II L1L1--DD

Core 1Core 1

vCPU8vCPU8
vCPU9vCPU9

vCPU10vCPU10
vCPU11vCPU11

L1L1--II L1L1--DD

Core 2Core 2

vCPU12vCPU12
vCPU13vCPU13
vCPU14vCPU14
vCPU15vCPU15

L1L1--II L1L1--DD

Core 3Core 3

Memory Distributed InterconnectMemory Distributed Interconnect

Banked 1MB LevelBanked 1MB Level--2 Cache2 Cache

EJTAG

I2C

PCMCIA

Flash

GPIO

UART

Debug

Misc

EJTAG

I2C

PCMCIA

Flash

GPIO

UART

Debug

Misc

PI
C

PI
C

XAUIXAUI XAUIXAUI RR
SS
AA

SAESAE



May 2009   · 18

Conclusion

• RMI’s architecture addresses the critical 
issues of multi-core
– Software migration from single- to multi-core
– Meeting the market demand of high performance
– Achieving system level scaling

• Many companies worldwide have achieved 
superb results by developing with RMI and 
plan to continue with our next generation



May 2009   · 19

Software Infrastructure and 
FreeBSD Port



May 2009   · 20

Next Generation, Multi-core, Multi-threading 
Programming Solutions Development Kits

• Comprehensive Threading-Enhanced 
Debugger, Profiler and Analysis Tools

• Support for Multiple Industry Standard 
Operating Systems

• Multi-core, Multi-threaded, Multi-OS 
resource partitioning framework

• Reference Application Software

• All included in a complete Software 
Developer Kit

• Comprehensive Threading-Enhanced 
Debugger, Profiler and Analysis Tools

• Support for Multiple Industry Standard 
Operating Systems

• Multi-core, Multi-threaded, Multi-OS 
resource partitioning framework

• Reference Application Software

• All included in a complete Software 
Developer Kit

XLR7xxXLR7xx
RMI

XLR5xxXLR5xx
RMI

XLR3xxXLR3xx
RMI

XLR6xxXLR6xx
RMI

XLR4xxXLR4xx
RMI

XLR2xxXLR2xx
RMI

Bootloader, Drivers, BSP, Tools, Library, APIs, 
Debug/Profile Utilities

Linux

Linux 
Apps

VxWorks, MontaVista Linux, PNE 
Linux, FreeBSD, Customer’s OS

Third Party Software, Customer’s 
Software

Multi-Core, Multi-Threaded Processors and Boards 

Executive 
Apps

Libs

CRF

Simulators



May 2009   · 21

CRF HypervisorCRF Hypervisor

Chip Resource Framework (CRF)
• CRF is a thin software layer multi-core resource 

management hypervisor framework

• CRF is an infrastructure solution of Multicore software 
programming, brings up Multiple OSs (e.g. 2 or more 
Linux OSs) on RMI Multicore processor.

– Dynamically change resource allocation on different 
domains

– Dynamically start/stop/delete any domain without affects 
others.

– Enables the critical resource sharing across different 
domains

• Does not impair system performance

• Uniquely addresses many issues involved in multi-core 
software

– Manages chip resource: memory, network and system
– Virtualizes chip resources: interfaces, messaging, consoles, 

and events
– Aids implementation of alternative software architectures
– Virtual Consoles and Event Queues
– Enhances debug

VxWorks VxWorks 
/Linux2/Linux2

XLR/XLS SOC Processors

RMIOSRMIOS
AppsAppsLinux1Linux1

Domain #0 Domain #2Domain #1

Chip Resource Allocation, 
Management and Partitioning!

Chip Resource Allocation, 
Management and Partitioning!

I/OsI/Os

MemoryMemory
CPUsCPUs

Acceleration 
Engines

Acceleration 
Engines

CRF solves the problems associated with the managing 
and running of multiple operating systems on a single chip!

GMAC, XAUI, SPI4.2, XGMII,  
PCIe, PCIx, HT, SRIO, USB, UART, etc.

GMAC, XAUI, SPI4.2, XGMII,  
PCIe, PCIx, HT, SRIO, USB, UART, etc.



May 2009   · 22

CRF Multiple OSs Solution Example

vCPU0vCPU0 vCPU1vCPU1 vCPU2vCPU2 vCPU3vCPU3 vCPU4vCPU4 vCPU5vCPU5 vCPU6vCPU6 vCPU7vCPU7 vCPU15vCPU15

Linux SMP OS1Linux SMP OS1 Linux SMP OS2Linux SMP OS2 RMIOS Executive AppsRMIOS Executive Apps

UART1UART1UART0UART0 vUART7vUART7 vUART15vUART15

PCIxPCIx NICNIC GMAC0GMAC0--33 XAUIXAUI

MemoryMemory

CRF AgentCRF Agent CRF AgentCRF Agent CRF AgentCRF Agent

CRF ShellCRF Shell

Compression Compression 
EngineEngine

Security Security 
EngineEngine

… ….

Control Plane and User 
Management Interface
Control Plane and User 
Management Interface

Data Plane  
(Slow Path)
Data Plane  

(Slow Path)
Data Plane Offload 
(Fast Path)
Data Plane Offload 
(Fast Path)

Domain#0Domain#0 Domain#1Domain#1
Domain#2Domain#2

DMADMA

Console for 
domain#0 and #2
Console for 
domain#0 and #2

Console for 
domain#1
Console for 
domain#1

I/OI/O
I/OI/O I/OI/O



May 2009   · 23

RMI FreeBSD Development

rmi-freebsd-0.1rmi-freebsd-0.1

Mar.2007Mar.2007

rmi-freebsd-0.4rmi-freebsd-0.4

rmi-freebsd-0.3rmi-freebsd-0.3 rmi-freebsd-0.5rmi-freebsd-0.5

rmi-freebsd-0.6rmi-freebsd-0.6

FreeBSD 
Foundation
FreeBSD 

Foundation

May.2007May.2007

FreeBSD 6.1FreeBSD 6.1--StableStable
Code BaseCode Base

Profiling, Debugging Profiling, Debugging 
EnhancementEnhancement

Jul.2007Jul.2007

Oct.2008Oct.2008

XLS Support, XLS Support, 
Move to FreeBSD6.3 Move to FreeBSD6.3 

Code BaseCode Base

Jan.2009Jan.2009

Move to FreeBSD 6.4Move to FreeBSD 6.4
Code BaseCode Base

Apr.2009Apr.2009



May 2009   · 24

Contact

• George Jones  (Vice President)
– gjones@rmicorp.com

• Harrison Zou (Solutions Architect)
– hzou@rmicorp.com



May 2009   · 25

Thanks!Thanks!


