
New event timers infrastructure

Alexander Motin
mav@FreeBSD.org

Karlsruhe, October 8, 2010



• Before:
– each platform has own event timers management code;
– x86 timers code very tangled, no HPET support;
– timer interrupts have fixed freqency from HZ to 4 * HZ;
– statclock often aliased or equal to hardclock;
– profclock often equal to hardclock;
– high interrupt rate increases idle power consumption, while

lowering HZ increases time granularity.



• Project consists of several parts:
– create MI event timer driver API (done);
– write MI event timers management code (done);
– port MD event timer drivers to new MI API and remove MD

management code:
• arm

– Marvell (done)
– others (todo)

• amd64 (done)
• i386 (done)

– XEN PV (todo)
• ia64 (todo)
• mips (done)
• pc98 (done)
• powerpc (done)
• sparc64 (done)
• sun4v (done)



• MI event timer driver API (timeet.h, kern_et.c):
– Driver:

• struct eventtimer;
• et_register(struct eventtimer *et);
• et_deregister(struct eventtimer *et);

– Consumer:
• et_find(const char *name, int check, int want);
• et_init(struct eventtimer *et, et_event_cb_t *event,

et_deregister_cb_t *deregister, void *arg);
• et_start(struct eventtimer *et, struct bintime *first, struct

bintime *period);
• et_stop(struct eventtimer *et);
• et_free(struct eventtimer *et);



• MI event timers management code supports several modes:
– one-shot per-CPU mode (prefered):

• each CPU uses own one-shot capable even timer;
• timers each time reprogrammed for the time of the next

hardclock/statclock/proflock event;
• when CPU idle -- timer programmed to skip events when

no callouts scheduled (up to 1/4s);
• IPI_HARDCLOCK may be used to wake up sleeping

CPU to reprogram it’s timer on inter-CPU callout
scheduling;

• binuptime() used to track time.

CPU0 CPU1 CPU2 CPU3



– one-shot global mode:
• single one-shot capable even timer used;
• timer each time reprogrammed for the time of the next

hardclock/statclock/proflock events for all CPUs;
• one CPU handles timer interrupts; IPI_HARDCLOCK

used to redistribute events to others, when needed;
• when CPU idle -- skip events when no callouts scheduled

(up to 1/4s);
• binuptime() used to track time.

CPU0 CPU1 CPU2 CPU3



– periodic per-CPU mode:
• each CPU uses own periodic even timer;
• timers programmed to generate fixed interrupt rate (1-4 *

HZ, increased to about 8KHz when profiling);
• no interrupts could be skipped;
• periodic timer interrupts used to track time.

CPU0 CPU1 CPU2 CPU3



– periodic global mode:
• single periodic capable even timer used;
• timer programmed to generate fixed interrupt rate (1-4 *

HZ, increased to about 8KHz when profiling);
• one CPU handles timer interrupts; IPI_HARDCLOCK

used to redistribute events to others, when needed;
• when CPU idle (except first) -- skip hardclock events

when no callouts scheduled up to 1/4s;
• periodic timer interrupts used to track time.

CPU0 CPU1 CPU2 CPU3



• Operation mode depends on hardware capabilities, but in most
cases can be tuned via sysctl and loader tunables.

• As soon as BSP may not receive interrupts for a long time:
– hardclock_anycpu() implemented to replace hardclock(); it

may be called at any CPU to properly update system time
and do other global routine jobs for any number of
hardclock events;

– if currently active timecounter wraps often -- BSP will wake
up frequent enough to handle it.

– if kernel built with DEVICE_POLLING -- BSP will not skip
events.



• Implemented MD event timer drivers:
– arm (Marvell):

• CPUTimer0 (periodic and one-shot);
– mips

• MIPS32 (periodic and one-shot, per-CPU);
– powerpc

• decrementer (periodic and one-shot, per-CPU);
– sparc64

• tick/stick (periodic and one-shot, per-CPU);
– sun4v

• tick (periodic and one-shot, per-CPU);
– x86:

• HPET (periodic and one-shot, optionally per-CPU);
• i8254 (periodic, optionally one-shot);
• LAPIC (periodic and one-shot, per-CPU, stops in C3);
• RTC (periodic).



• `systat -vm 1` on 8-core system before:



• `systat -vm 1` on 8-core system after:



• Results:
• Temperature of Core i7-870 with boxed cooler with 25C at the

room:
– full load: 85С;
– idle without PM: 55C;
– idle w/ P-states+C-states: 32С.

• Time to build net/mpd5 port in one thread on Core i7-870:
– default: 12,02c;
– w/ C6 state used: 10,79c (10% more TurboBoost).



• Problems/further work directions:
– some kernel subsystems generate too much events; it would

be nice to remove or group some of them; callout(9) API
may need to be extended to allow precision specified;

– callout(9) call wheel optimized for periodic ticks; difficult to
get next scheduled tick time; switch to some tree structure?

– scheduler depends on both hardclock (via sched_tick()) and
statclock (via sched_clock()); it would be nice to be able
skip some hardclock/statclock calls also when CPU is active;

– scheduler unaware about sleeping cores; it would be nice to
not schedule to sleeping cores without real need;

– cache/TLB invalidation IPIs sent to every CPU; it would be
nice to avoid it, if possible;

– write more efficient cpu_idle() methods for some platforms.
– implement powertop alternative.

• Questions?


