
Porting compression services to Capsicum

Daniel Peyrolon
dpl@FreeBSD.org

Mentor: Brooks Davis
brooks@FreeBSD.org

FreeBSD Developer Summit
Hilton Conference Centre

St. Julian’s, Malta
September 26 – 28, 2013

dpl@FreeBSD.org
brooks@FreeBSD.org

The GSoC proposal

Porting the following software to Capsicum:

I bzip2(1)

I xz(1)

I zlib(3)

I libavcodec

Porting applications

The way I used Capsicum.

I Used the fork() style.

I I didn’t use Casper.

I Child is in capability mode.

I Changed all the functions using paths to fds. (stat - fstat)

I I wanted to keep the portability of the application.

Porting bzip2(1)

It was not that hard, but I had this issues:

I Lack of experience.

I Tried to send fds to the child through UNIX sockets.

I That proved to be a bad choice.

Porting bzip2(1)

This was how I did it.

I Put the file descriptors bzip2 was working with on global
scope.

I I needed a fd of the directory where the current file was
located (unlink).

I Just a matter of writing the code to limit all the fds, and
enter capability mode.

I The parent just waits until the sandboxed child finishes.

Porting bzip2(1)

How I kept portability:

ifdef __FreeBSD__

include <osreldate.h>

if __FreeBSD_version >= 900041

define CAPSICUM

include <libgen.h>

include <sys/capability.h>

include <sys/wait.h>

include <sys/un.h>

endif /* __FreeBSD_version >= 900041 */

endif /* __FreeBSD__ */

Porting bzip2(1)

Typical fork() usage:

#if defined(CAPSICUM)

if ((forkpid = fork()) == -1){

error();

} else if (forkpid != 0) {

/* Let the children compress */

wait(NULL);

} else if (forkpid == 0){

capsicum_enter();

#endif /* CAPSICUM */

stuff();

#if defined(CAPSICUM)

exit(0);

}

#endif /* CAPSICUM */

Porting xz(1)

Well, that was harder...

I The fds are stored in a struct file pair.

I The function where the work is done uses the path of the files.

I Opens the files, and works on them.

Porting xz(1)

File handling code:

void (*run)(const char *filename) = opt_mode == MODE_LIST

? &list_file : &coder_run;

for (size_t i = 0; i < args.arg_count && !user_abort; ++i) {

if (strcmp("-", args.arg_names[i]) == 0)

//Processing from stdin to stdout.

run(args.arg_names[i]);

}

Porting xz(1)

New way of opening the files:

I I kept an array of malloc’ed file pair *.

I All the files are opened before doing the actual work.

I run() uses now file pair * instead of paths.

A Frame with Table

Benchmarking results for bzip2 and xz.

Filesize bzip2 cbzip2 xz cxz

1kb 0.01 0.01 0.11 0.11
10kb 0.01 0.01 0.11 0.11
100kb 0.03001 0.03002 0.13672 0.13071
1mb 0.27016 0.27029 0.41307 0.41234

1kb 0 0 0.01 0.01
10kb 0 0 0.01 0.01
100kb 0.01 0.01 0.01 0.01
1mb 0.10051 0.10213 0.01033 0.0104

I 1000 tests.

I We couldn’t quantify the overhead on my machine.

Porting a library

Everything changes.

I You can’t wait to a child process (that’s what we thought).

I Use pdfork(2).

I This child process will have to get the data from somewhere.
(unless you’re inheriting everything).

zcaplib

I It can be linked instead of zlib.

I zcaplib is just a giant wrapper trying to work.

I Uses libnv.

I It executes zlibworker. Which is listening for commands.

I At most I’m sending and receiving 5kb of data.

I I stored the sandboxes on a SLIST (queue(3)).

zcaplib’s design

zcaplib

Typical function in zcaplib.

extern const char * zcapcmd_gzerror();

const char * ZEXPORT gzerror(file, errnum)

gzFile file;

int *errnum;

{

return zcapcmd_gzerror(file, errnum);

}

zcaplib

Typical nvlist usage in zlibworker.

initNvl();

nvlist_add_number(nvl,"command",ZCAPCMD_GZERROR;

nvlist_add_binary(args,"file",file,gzsize);

nvlist_add_nvlist(nvl,"args",args);

result=sendCommand(nvl,file);

ptr=nvlist_get_string(result,"result");

*errnum=nvlist_get_number(result,"zerrno");

zcaplib’s design

Using one or many sandboxes

I One sandbox - We do care about sending the structs from
application to sandbox.

I Many sandboxes - We only send it once, and the application
should forget about it.

Conclusions

I Porting an application to Capsicum is easy.

I Porting a library to Capsicum is hard.

I It’s possible to write a tool that automates most of the work.

I Overload Casper with features?

Thank you all for your attention!
Questions?

