

FreeBSD and Touchscreens:
Playing with your fingers.

Roberto Fernández Cueto
System Developer

Bally Wulff Games & Entertainment GmbH

Introduction

● What does Bally Wulff produces?
▸ Slot Machines

● Why do we need a custom driver?
▸ There was no driver for FreeBSD in 2008.

● Are all the touch screen the same?
▸ No, they implement different protocols and

features.

Design

Single Touch
Screen 1

Single Touch
Screen 2

Single Touch
Screen 3

Multi Touch
Screen 1

Multi Touch
Screen 2

FreeBSD

X.Org

Raw
Proto 1

Raw
Proto 2

USB HID
Proto 1

USB HID
Proto 2

???

Utouch
Protocol

Kernel module
● Output protocol:

struct utouch_coord {
uint16_t x;
uint16_t y;
uint16_t pressure;
uint16_t button;

};
struct utouch_proto {

char sig[2];
uint8_t version;
uint8_t ssize;
uint8_t mode;
struct utouch_coord coord;
uint8_t buttons;
uint8_t res[1];

};

Kernel module
● Decoder function:

struct utouch_hid {
struct hid_location loc;
uint32_t flags;
uint8_t id;

};

typedef uint8_t (touchdecode_t)(
char buf[],
struct utouch_coord * coord,
struct utouch_hid ** locations

);

Kernel module
● Status structure.

struct utouch_status {
struct utouch_coord poscurr;
struct utouch_coord poslast;
struct utouch_coord posmin;
struct utouch_coord posmax;
uint8_t buttons;
uint16_t filtered;

};

Kernel module
● Softc structure.

struct utouch_softc {
struct mtx mtx;
struct usb_device * udev;
struct usb_callout callout;
struct usb_xfer * xfer[2];
struct usb_fifo_sc fifo;
uint32_t flags;
struct utouch_status touch;
touchdecode_t * decoder;
struct utouch_hid ** loc_array;
uint16_t loc_array_size;

);

X.Org module

● Main problem:
▶ Coordinates not adjusted to the resolution.
▶ A calibration will be needed.
▶ The calibration needes to know the resolution of the display.

● Additional problems:
▶ All the changes on the touch screen will be received.
▶ There is always changes on the screen
▶ The input must be filtered.
▶ The xf86PostMotionEvent, xf86PostButtonEvent are not enough for

a multitouch screen.
═ Xf86PostTouchEvents – TouchBegin, TouchUpdate & TouchEnd

X.Org module

● Solutions:
▶ Linear Transformation

● Three points for calibration = 6 equations

(X sY s)=(a b c
d e f)⋅(

Xi
Y i
K){

X s=Screen position X
Y s=Screen positionY
X i= Input position X
Y i= Input positionY

(X s0
,Y s0) = (12.5 % ,12.5 %)

(X s1
,Y s1) = (50 % ,87.5 %)

(X s2
,Y s2) = (87.5 % ,50%)

X.Org module

● We do not filter during calibration.
▶ But we cannot take only a point for the calibration.
▶ We take the average of points.

X in=
1
N

⋅∑
j=0

N

X j in

Y in=
1
N

⋅∑
j=0

N

Y j in

X.Org module

K=((X i0−X i2)⋅(Y i1−Y i2))−((X i1−X i2)⋅(Y i0−Y i2))

If K == 0 Then a = e = 1 && b = d = 0

a=
(X s0

−X s2)⋅(Y i1−Y i2)−(X s1
−X s2)⋅(Y i0−Y i2)

K

b=
(X i0−X i2)⋅(X s1

−X s2
)−(X i1−Xi2)⋅(X s0

−X s2
)

K

c=
Y i0⋅(X i2⋅X s1

−X i1⋅X s2
)+Y i1⋅(X i0⋅X s2

−X i2⋅X s2
)+Y i2⋅(X i1⋅X s0

−X i 0−X s1
)

K

d=
(Y s0

−Y s2
)⋅(Y i1−Y i2)−(Y s1

−Y s2
)⋅(Y i0−Y i2)

K

e=
(Xi0−X i2)⋅(Y s1

−Y s2)−(Xi1−X i2)⋅(Y s0
−Y s2)

K

f =
Y i0⋅(X i2⋅Y s1

−X i1⋅Y s2)+Y i1⋅(X i0⋅Y s2
−X i2⋅Y s2)+Y i2⋅(X i1⋅Y s0

−X i 0−Y s1)
K

X.Org module

● How do we tell the driver that we want to calibrate?
▶ Signals:

▷ SIGCAL0 = SIGRTMIN + 1
◈ Exit and save calibration.
◈ Unpredictible behavior expected when the calibration was not completed.

▷ SIGCAL1 = SIGRTMIN + 2
◈ Enter calibration mode.
◈ Go to the next calibration state ignoring normal flow.
◈ Usefull to go to the beginning state of the calibration when the driver is in a

wrong status.
▷ SIGRESET = SIGRTMIN + 3

◈ Sends the reset signal to the kernel driver
◈ Some devices needs a reset.

X.Org module

● UtouchDevice:
struct Point {

int x, y;
};

struct UtouchDevice {
...
struct UCalLinear utcLinear;
struct Point fakeCalibrationButton;
unsigned int buttons;
struct coord * button_states;
int filter_limit;

};

Questions?

