
© 2019 Arm Limited

Upcoming Arm
architectural features

Andrew Wafaa <andrew.wafaa@arm.com>

Director Open Source, Communities

FreeBSD Vendor Summit – October 2019

2 © 2019 Arm Limited

Introduction

Many additions to the Arm architecture have been made since ARMv8.0 was released. In
this talk, I aim to talk through the some of the more interesting ones as they can have
ramifications in software support.

I will go through a lot of features quickly, in order to show:

1. That they exist,

2. Give some indication on the progress of their support in software (primarily in Linux).

These slides are a rough indication of architectural support present/coming. I have links to
documentation which I strongly suggest interested parties to read. ☺

I am a mouth piece for our engineers, so please validate all answers I give!

3 © 2019 Arm Limited

Architectural features
In this talk I aim to cover...

• ARMv8.1
• Large System Extensions

• ARMv8.2
• 52-bit address spaces
• Persistent memory support
• Scalable Vector Extension
• Statistical profiling extension
• RAS

• ARMv8.3
• Nested virtualisation
• Pointer authentication

• ARMv8.4
• Enhanced Nested virtualisation
• MPAM

• ARMv8.5
• Deep persistence
• Memory Tagging Extension
• Mitigations against side-channel attacks

(retroactively added to Arm V8.0)

• New Technologies for the Arm A-Profile
Architecture
• Transactional Memory Extension
• SVE2

4 © 2019 Arm Limited

Large System Extensions – ARMv8.1-LSE
Let's consider: __atomic_fetch_add(&var, 1, __ATOMIC_RELAXED);

• LSE allows atomic operations (CAS, SWP, LD<OP>, ST<OP>, where OP is one of ADD,
CLR, EOR, SET, SMAX, SMIN, UMAX, UMIN) in a single instruction,

• This also allows the system to perform the atomic operations outside the CPU,

• Unfortunately, as atomic instructions are rather fundamental it does not make sense to
select them with HWCAPs in IFUNCs,

• There is a multi-lib mechanism in glibc 2.28 that supports HWCAP_ATOMIC, however
that would provoke multiple binaries, thus multiple builds,

• A better way (for distros) is being worked on...

beg:ldxr w1, [x0]

add w1, w1, #0x1

stxr w2, w1, [x0]

cbnz w2, beg

-march=armv8-a+lse

stadd w1, [x0]

5 © 2019 Arm Limited

Another way to deploy LSE -matomic-ool

• There is an "out-of-line" atomics patch set for gcc,

• Our test case then compiles to:
0000000000400720 <__aa64_stadd4_relax>:

400720: b0000082 adrp x2, 411000 <getauxval@GLIBC_2.17>

400724: 3940e442 ldrb w2, [x2, #57]

400728: 350000c2 cbnz w2, 400740 <__aa64_stadd4_relax+0x20>

40072c: 885f7c22 ldxr w2, [x1]

400730: 0b000042 add w2, w2, w0

400734: 88027c22 stxr w2, w2, [x1]

400738: 35ffffa2 cbnz w2, 40072c <__aa64_stadd4_relax+0xc>

40073c: d65f03c0 ret

400740: b820003f stadd w0, [x1]

400744: d65f03c0 ret

• We perform a direct branch to select the appropriate code sequence at run time,

• Practical tests on DPDK lock stress test showed very little perf degradation,

• Hopefully, this patch set will make it into gcc soon.

6 © 2019 Arm Limited

52-bit address spaces – ARMv8.2-LVA, ARMv8.2-LPA

When running with a 64KB PAGE_SIZE it is possible, on supported hardware, to have a 52-
bit physical address (PA), intermediate physical address (IPA) and virtual address (VA).
(Normally the maximum size is 48-bit).

• 52-bit PA support landed in Linux 4.16,

• 52-bit IPA support landed in 4.20,

• 52-bit VAs for userspace landed in 5.0,

• 52-bit VAs for kernel space are queued up and, hopefully, will land in 5.4,

Just like with x86, larger user space VAs on Arm are achieved by supplying a "high" hint to
mmap.

Currently a 4KB PAGE_SIZE does not have support for an address space larger than 48-bit.

7 © 2019 Arm Limited

Persistent memory support in Arm
DC CVAP & DC CVADP

• ARMv8.2-DCPoP introduced the notion of cleaning to Point of Persistence (PoP),
• Writes to the point of persistence are maintained in the event of power loss,

• ARMv8.2-DCCVADP introduced the Point of Deep Persistence (PoDP),
• Writes to the point of deep persistence are maintained in the event of an instantaneous power loss.

In the Linux kernel the following is being worked on:

• Memory hot-add/remove support,

• PTE_DEVMAP,

With some miscellaneous cleanup patches this then allows ZONE_DEVICE and DAX.

In order for the arm64 kernel to pick up NVDIMMs, the firmware needs to expose the
requisite NFIT information in ACPI.

On the userspace side, PMDK is being investigated.

8 © 2019 Arm Limited

Scalable Vector Extension (SVE) – Example!
My favourite Arm instruction – ldff1b

In this example we have a block of memory pointed to by x0. However the memory block
crosses a page boundary and the next page isn’t present so would cause a fault on access.

Register p1 is a predicate register, it dictates which lanes are affected by an operation.
P1/Z is a zero-ing predication meaning “set lanes to 0 that aren’t selected”.

The result is stored in register z0 which is an SVE register. The number of lanes is
IMPLEMENTATION DEFINED (but discoverable at run time).

The instruction above won’t provoke a page fault if it loads the first lane successfully. ☺

Memory at x0 0x01 0x02 0x03 0x04 0x05 invalid invalid invalid …

Register p1 1 1 0 0 1 1 1 0 …

We then perform a: LDFF1B Z0.B, P1/Z, [x0]

Result in Z0 0x01 0x01 0x00 0x00 0x05 0x00 0x00 0x00 0x00

9 © 2019 Arm Limited

Scalable Vector Extension (SVE)
An optional feature in the ARMv8.2 architecture

• SVE adds another set of registers Z0-Z31 (lower 128 bits of map to V0-V31), size is
implementation defined (it can vary from 128b to 2048b),

• Predicate registers P0-15 are also added, P0-P7 can be used to affect how an instruction
operates (they are “governing predicates”),

• In addition to predication, we have the First Fault Register (FFR), this is used to handle
crossing memory page boundaries,

• All the above allows one to program SVE without knowing how big the vectors Z0-Z31
are, or even how big the array of data is at compile time,

• In other words, there are significantly more scenarios where SVE can be applied where
Neon would be unsuitable, for instance, string handling!

• Ideally SVE can be covered in a talk/course of its own…

10 © 2019 Arm Limited

SVE example - strlen
Example stolen from https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf

1. We read data with ldff1b, from
x1 into z0. Successful reads then
moved into p1,

2. Successfully read elements
compared to 0. Equalities stored in
p2, and then “inverted” by brkbs -
break before first true condition,

3. x1 is then advanced by p2,

4. If any 0s found return x1 - x0,
otherwise loop.

// ---
// int strlen(const char *s) {
// const char *e = s;
// while (*e) e++;
// return e - s;
// }
// ---
// x0 = s

// Unoptimized SVE strlen
strlen:

mov x1, x0 // e=s
ptrue p0.b // p0=true

.loop:
setffr // ffr=true
ldff1b z0.b, p0/z, [x1] // p0:z0=ldff(e)
rdffr p1.b, p0/z // p0:p1=ffr
cmpeq p2.b, p1/z, z0.b, #0 // p1:p2=(*e==0)
brkbs p2.b, p1/z, p2.b // p1:p2=until(*e==0)
incp x1, p2.b // e+=popcnt(p2)
b.last .loop // last active=>!break
sub x0, x1, x0 // return e-s
ret

https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf

11 © 2019 Arm Limited

Software support for SVE

• SVE is supported in gcc 8.1 & llvm 7,
• Auto vectorisation is expected to improve with subsequent releases,

• The Linux kernel supports SVE from 4.15,

• (SVE2 support is relayed to userspace from Linux 5.2 and targeted for gcc 10 & llvm 9),

• QEMU supports SVE from version 3.1,

• Arm also has an SVE instruction emulator based on Dynamo-Rio:
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-
tools/arm-instruction-emulator

• … and some commercial C/C++/Fortran compilers…

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-instruction-emulator

12 © 2019 Arm Limited

Statistical profiling extension
An optional feature in the ARMv8.2 architecture

• Traditional sampling with a PMU
• Relies on interrupts, then the kernel to gather

data,

• Statistical profiling extension
• Gives contextual information for the event,
• Can sample everywhere (allowed by security),

• SPE is accessed in perf, as an example:
perf record -e

arm_spe/ts_enable=1,pa_enabl

e=1/

• Perf supported landed in Linux 4.16,

• Support for ACPI SPE landed in Linux 5.3.

... ARM SPE data: size 2097152 bytes

LD

VA 0xffff00000f293bc0

PA 0xfb24ebc0 ns=1

LAT 0 XLAT

EV RETIRED L1D-ACCESS TLB-ACCESS

PC 0xff00000815c400 el3 ns=1

LAT 0 TOT

TS 39395093558

13 © 2019 Arm Limited

Nested virtualisation – ARMv8.3-NV and ARMv8.4-NV

Unfortunately virtualisation support in ARMv8 did not originally include nesting. Thus on
older hardware it is not possible to run a guest within a guest...

Nested virtualisation was introduced in ARMv8.3-NV and provided a means to run a
hypervisor in EL1 (with trapping to the host hypervisor to handle scenarios). This was
enhanced in ARMv8.4-NV to replace a lot of the trapping with an array lookup.

Nested virtualisation is an optional feature.

Nested virtualisation support in the kernel/KVM is being developed and some patches to
enable ARMv8.3-NV have been posted to lakml.

14 © 2019 Arm Limited

Memory Partitioning and Monitoring (MPAM)
Introduced as optional in ARMv8.4

• MPAM allows one to partition the L3
cache s.t. sets are reserved,

• This can then provide more predictable
performance to certain tasks,

• MPAM also allows monitoring of memory
traffic,
• i.e. one can monitor task memory usage.

• MPAM support is still being developed
for the Linux kernel.

L3 cache set L3 cache set

Half of cache
reserved for process

15 © 2019 Arm Limited

Memory Tagging Extension – ARMv8.5-MemTag

• Introduced in ARMv8.5 to protect against
buffer overrun and use-after-free,

• VA[59:55] are a logical tag (or colour),

• A physical address tag is assigned with 16
byte granularity,

• The physical address tag is stored in
memory,

• The logical and physical address tags are
Tag Checked and an exception can be
thrown on mismatch.

Tag Pointer

059 5660

pA✅

pB❌

TBI

63

16 © 2019 Arm Limited

Employing Memory Tagging Exception
This is a subset of instructions for MTE…

• Generating a random tag:
IRG x1, x0 – generate random tag, apply it to address in x0, store result in x1

• Generating two more different random tags – continuing from above:
GMI x2, x1, x2 – x2 contains “excluded set” so far only tag from x1
IRG x3, x0, x2 – x3 contains random tag applied to x0, it cannot match x1
GMI x2, x3, x2 – x2 contains “excluded set”, so far from x1 and x3
IRG x4, x0, x2 – x4 contains random tag applied to x0, it cannot match x1 or x3
(if we run out of random tags, IRG will store 0 in x2 to notify us)

• Storing a tag to physical memory:
STG x1, [x0] – extract tag from x1, store in physical memory pointed to by x0

• Loading a tag from physical memory:
LDG x2, [x0] – read tag from x0 store in x2

17 © 2019 Arm Limited

Tag Checking

There are three kinds of Tag Checking:

1. No Effect,

2. Synchronous Exception failure. A Tag Check failure results in a data abort being raised
(if the memory access was a write it will be blocked). Userspace sees a signal with the
context at the point of failure. (i.e. similar to a SIGSEGV on invalid pointer access),

3. Asynchronously Accumulated. The memory access takes place, and any Tag Check
failures cause bit 0 to be set in TFSRE0_EL1.

Synchronous Exception failure is more expensive than Asynchronously Accumulated but
gives extra security.

18 © 2019 Arm Limited

Mitigations against speculation/side-channel attacks
I would strongly recommend reading the references with several coffees to take these in…

The following are optional in ARMv8.0 and mandatory in ARMv8.5.

• ARMv8.0-SB, Armv8.0 Speculation Barrier
• Introduces Consumption of Speculative Data Barrier (CSDB),
• The CSDB instruction is a memory barrier instruction that controls speculative execution and data value

prediction

• ARMv8.0-SSBS, Armv8.0 Speculative Store Bypass Safe
• Introduces Speculative Store Bypass Barrier (SSBB),
• The SSBB is a memory barrier that prevents speculative loads from bypassing earlier stores to the same

virtual address under certain conditions.

• ARMv8.0-PredInv, Armv8.0 Prediction Invalidation
• ARMv8.0-PredInv adds the CFP RCTX, CPP RCTX, DVP RCTX, CFPRCTX, CPPRCTX, and DVPRCTX System

instructions. These instructions prevent predictions based on information gathered from earlier
execution within a particular execution context from affecting the later speculative execution within
that context, to the extent that the speculative execution is observable through side channels.

19 © 2019 Arm Limited

More speculation

The following are mandatory in both ARMv8.0 and ARMv8.5 and advertise the
susceptibility of the CPU to cache speculation variants:

• ARMv8.0-CSV2, Armv8.0 Cache Speculation Variant 2

• ARMv8.0-CSV3, Armv8.0 Cache Speculation Variant 3

The above provide system registers that are available in all Arm implementations.

20 © 2019 Arm Limited

Arm Transactional Memory Extension (TME)
See references section for instruction encodings and pseudocode…

Programmer writes

tstart x0

cbnz x0, fallback

// transactional code here
tcommit

Hardware provides

• Strong isolation
• Non-interference & containment from both

transactional and non-transactional code.

• Failure atomicity
• Architectural changes discarded on failure.
• All instructions commit or none.

• Best-effort transactions
• No forward progress guarantee, SW must

provide non-transactional fallback path.
• Good for multi-client “server” applications

with large, rarely contended data structures.

21 © 2019 Arm Limited

An example of public documentation for New Technologies

22 © 2019 Arm Limited

References

• ArmARM: https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf

• Speculation attack mitigation: https://developer.arm.com/support/arm-security-
updates/speculative-processor-vulnerability/latest-updates/cache-speculation-issues-
update

• ArmARM v8-A Supplement - MPAM:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0598a.b/index.html

• ArmARM v8-A Supplement - SVE:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0584a.f/index.html

• ArmARM v8-A Supplement - RAS:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0587c.b/index.html

• https://community.arm.com/developer/ip-products/processors/b/processors-ip-
blog/posts/new-technologies-for-the-arm-a-profile-architecture

https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/latest-updates/cache-speculation-issues-update
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0598a.b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0584a.f/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0587c.b/index.html
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture

23 © 2019 Arm Limited

References (2)

• https://static.sched.com/hosted_files/bkk19/3c/BKK19-202_New-Technologies-in-Arm-
Architecture.pdf

• https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

• https://static.docs.arm.com/ddi0602/b/ISA_A64_xml_futureA-2019-06_OPT.pdf

https://static.sched.com/hosted_files/bkk19/3c/BKK19-202_New-Technologies-in-Arm-Architecture.pdf
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://static.docs.arm.com/ddi0602/b/ISA_A64_xml_futureA-2019-06_OPT.pdf

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
תודה

© 2019 Arm Limited

Thank you for your attention!

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2019 Arm Limited

