
FREEBSD ON
ARM64 HYPER-
V
- Wei Hu (whu@microsoft.com)

-Souradeep
Chakrabarti(schakrabarti@microsoft.com)

▪ Microsoft is currently offering Linux in ARM64 SKUs of Azure.

▪ FreeBSD is available for x86 SKUs in Azure.

▪ We are working on enabling FreeBSD on ARM64 SKUs of Azure.

▪ The following slides are on the major changes done to make it happen.

storvsc

acpi

vmbus_res(sys_re
s_irq)

acpi_container(sy
s_res_mem)

vmbus

netvsc

hv_utils

pcib

pci

nexus

- vmbus/. The parent of all Hyper-V devices. It also contains code for early
initialization, i.e. before any drivers are loaded.

- vmbus/amd64/ and vmbus/i386/. Contains vmbus IDT vector entry
and hypercall.

- storvsc/. Synthetic SCSI controller driver.

- netvsc/. Synthetic network controller driver.

- pcib/. PCI bridge driver for SR-IOV/pass-through.

- input/. Synthetic keyboard driver.

- utilities/. Drivers for KVP, VSS, time synchronization etc.

- include/. Shared header files; exposed by the vmbus.

- vmbus/aarch64/. Contains vmbus_aarch64.c, hyperv_reg.h, hyperv_machdep.h,

hyperv_machdep.c, hyperv_aarch64.c.

These files are specific for ARM64 Hyper-V.

- vmbus_aarch64.c : Contains new interrupt handler setup and teardown code.

- hyperv_aarch64.c : Contains Hyper-V identify.

- hyperv_machdep.c : Contains new hypercalls for ARM64 Hyper-V.

- hyperv_reg.h : Contains ARM64 specific synthetic MSR values.

▪ - vmbus/x86/. Contains vmbus_x86.c, hyperv_x86.c,hyperv_reg.h,
hyperv_machdep.h .

These are for both i386 and amd64.

Also new file introduced hyperv_common_reg.h, which contains common

synthetic MSR values for Hyper-V.

This approach to avoid redundancy of the code.

▪ To implement writing of MSR and reading of MSR in ARM64
HvCallSetVpRegisters hypercall and
HvCallGetVpRegisters hypercall is used.

▪ To have the Hypercalls from El1 to El2, ARM SMCCC
HVC is used.

▪ HvCallGetVpRegisters accesses registers beyond
a0 to a3. For that SMCCC 1.2 is implemented.

▪ Code :

▪ https://github.com/freebsd/freebsd-
src/blob/main/sys/dev/psci/smccc_arm64.S

▪ https://github.com/freebsd/freebsd-
src/blob/main/sys/dev/psci/smccc.h

UserEL0

KernelEL1

Hyper-VEL2

https://github.com/freebsd/freebsd-src/blob/main/sys/dev/psci/smccc_arm64.S

▪ Azure ARM64 hosts virtualizes the system counter and timer defined by the ARM64
architecture.

▪ Hyper-V synthetic timer counter initialization is not required here.

▪ hypercall page setup is moved from hyperv.c to x86 specific hyperv_x86.c, along
with hyperv timer counter initialization.

▪ hyperv_et.c is also not required for ARM64, it is only built now for x86.

▪ Have used ACPI FADT to identify Hyper-V, which was done using CPUID in
x86.

▪ Have used ARM SMCCC HVC to identify certain features of Hyper-V and
to set the guest OS id.

▪ In x86 VMBus was using Free IDT vector for Hyper-V ISR.
In ARM64 VMBus uses Interrupt mentioned in the _CRS of the HID VMBus.

▪ This resource is currently owned
by vmbus_res as a direct child
of ACPI.

▪ To access this resource from vmbus_res,
we have used :
devclass_get_device(devclass_find("vmbus_res"),0)

▪ Also introduced new attributes in vmbus_softc:
ires, icookie and vector.

Name (_HID, "VMBus") // _HID: Hardware ID
Name (_UID, Zero) // _UID: Unique ID
...
Name (_CRS, ResourceTemplate () // _CRS: Current

Resource Settings
{

Interrupt (ResourceConsumer, Edge, ActiveHigh,
Exclusive, ,,)

{
0x00000012,

}

▪ From the successful allocated ires resource, we are getting the
irq number using rman_get_virtual(), which we are using then for synthetic
interrupt controller setup.
sc->vmbus_idtvec = irq_data->irq;

▪ These changes are in vmbus_aarch64.c and the lapic based
IDT vector setup has been moved in vmbus_x86.c

▪ Enabling vmbus_pcib for to use accelerated networking feature of Hyper-V in
Azure.

- Hyper-V does not emulate a full-fledged PCI bridge.

- A cooperative PCI bridge driver is needed on FreeBSD.

- Handle PCI configuration space accessing.

- Setup BARs for SR-IOV/passed-through devices.

- Remap MSI/MSI-X data and address.

▪ Following this work, we will have SR-IOV, NVME enabled for FreeBSD on ARM64
Hyper-V.

