
FreeBSD on Azure ARM64
Souradeep Chakrabarti (schakrabarti@microsoft.com)

Wei Hu (weh@microsoft.com)

©Microsoft Corporation

Azure

Introduction

• We are from Microsoft Linux Systems Group

• Souradeep Chakrabarti:

Worked on AIX Unix, Linux and FreeBSD for last 11 years.

Currently working in Microsoft Linux Systems Group.

• Wei Hu:

Worked on Solaris, VmWare ESXi for 15+ years.

Currently also in Microsoft Linux System Group

©Microsoft Corporation

Azure

Preface

• Microsoft is currently offering Linux in ARM64 SKUs of Azure.

• FreeBSD is available for x86 SKUs in Azure.

• Major appliance vendors use FreeBSD on Azure.

• We are working on enabling FreeBSD on ARM64 SKUs of Azure.

• The following slides are on the major changes done to make it happen.

©Microsoft Corporation

Azure

Hyper-V driver in FreeBSD

X86 Hyper-V device driver layout

• vmbus/. The parent of all Hyper-V devices. It also

contains code for early initialization, i.e. before any drivers

are loaded.

• vmbus/amd64/ and vmbus/i386/. Contains vmbus IDT

vector entry and hypercall.

• storvsc/. Synthetic SCSI controller driver.

• netvsc/. Synthetic network controller driver.

• pcib/. PCI bridge driver for SR-IOV/pass-through.

• input/. Synthetic keyboard driver.

• utilities/. Drivers for KVP, VSS, time synchronization etc.

• include/. Shared header files; exposed by the vmbus.

storvsc

acpi

vmbus_res(sys_re
s_irq)

acpi_container(sy
s_res_mem)

vmbus

netvsc

hv_utils

pcib

pci

nexus

©Microsoft Corporation

Azure

New Hyper-V driver layout

• vmbus/aarch64/. Contains vmbus_aarch64.c, hyperv_reg.h, hyperv_machdep.h,

hyperv_machdep.c, hyperv_aarch64.c : These files are specific for ARM64

Hyper-V.

• vmbus_aarch64.c : Contains new interrupt handler setup and teardown code.

• hyperv_aarch64.c : Contains Hyper-V identify.

• hyperv_machdep.c : Contains new hypercalls for ARM64 Hyper-V.

• hyperv_reg.h : Contains ARM64 specific synthetic MSR values.

©Microsoft Corporation

Azure

Contd

• vmbus/x86/. Contains vmbus_x86.c, hyperv_x86.c,hyperv_reg.h,

hyperv_machdep.h . These are for both i386 and amd64.

• Also new file introduced hyperv_common_reg.h, which contains common

synthetic MSR values for Hyper-V.

• This approach to avoid redundancy of the code.

©Microsoft Corporation

Azure

Use of ARM SMCCC HVC

• To implement writing of MSR and reading of MSR in

ARM64 HvCallSetVpRegisters hypercall and

HvCallGetVpRegisters hypercall is used.

• To have the Hypercalls from El1 to El2, ARM SMCCC

HVC is used

• HvCallGetVpRegisters accesses registers beyond

a0 to a3. For that SMCCC 1.2 is implemented.

• Code :

sys/dev/psci/smccc_arm64.S

sys/dev/psci/smccc.h

UserEL0

KernelEL1

Hyper-VEL2

©Microsoft Corporation

Azure

Hyper-v identify and LOAD

• Azure ARM64 hosts virtualizes the system counter and timer defined by the

ARM64 architecture.

• Hyper-V synthetic timer counter initialization is not required here.

• hypercall page setup is moved from hyperv.c to x86 specific hyperv_x86.c, along

with hyperv timer counter initialization.

• hyperv_et.c is also not required for ARM64, it is now for x86.

• Have used ACPI FADT to identify Hyper-V, which was done using CPUID in

x86.

• Have used ARM SMCCC HVC to identify certain features of Hyper-V and

to set the guest OS id.

©Microsoft Corporation

Azure

EFI Serial console

• EFI serial console was not working and was causing hang during loading.

• Upon investigation, it was found the problem is coming from efi comconsole

setAttribute().

• https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=266248

• The fix of the same has been committed :

• https://cgit.freebsd.org/src/commit/?id=4b2322bba19d26f91d0f1a993798c52ebf4

5d41b

©Microsoft Corporation

Azure

Hyper-V Vmbus

©Microsoft Corporation

Azure

VMBUS Interrupt handling

Hyper-V acpi table

x86 VMBus was using Free IDT vector for Hyper-V ISR.

In ARM64 VMBus uses Interrupt mentioned in the _CRS

of the HID VMBus.

This resource is currently owned by vmbus_res as a

direct child of ACPI.

To access this resource from vmbus_res,

we have used :

devclass_get_device(devclass_find("vmbus_res"),0)

Also introduced new attributes in vmbus_softc:

ires, icookie and vector.

Name (_HID, "VMBus") // _HID: Hardware ID

Name (_UID, Zero) // _UID: Unique ID

...

Name (_CRS, ResourceTemplate () // _CRS:

Current Resource Settings

{

Interrupt (ResourceConsumer, Edge,

ActiveHigh, Exclusive, ,,)

{

0x00000012,

}

©Microsoft Corporation

Azure

Contd.

• From the successful allocated ires resource, we are getting the

irq number using rman_get_virtual(), which we are using then for synthetic

interrupt controller setup.

sc->vmbus_idtvec = irq_data->irq;

• These changes are in vmbus_aarch64.c and the lapic based

IDT vector setup has been moved in vmbus_x86.c

©Microsoft Corporation

Azure

vmbus pcib

• Enabled vmbus_pcib for to use accelerated networking feature of Hyper-V in

Azure.

• Hyper-V does not emulate a full-fledged PCI bridge.

• A cooperative PCI bridge driver is needed on FreeBSD.

• Handle PCI configuration space accessing.

• Setup BARs for SR-IOV/passed-through devices.

• Remap MSI/MSI-X data and address.

• This is to enable SR-IOV, AN, NVME enabled for FreeBSD on ARM64 Hyper-V.

©Microsoft Corporation

Azure

Enable SPI-MSIX mapping

• Azure HCI in ARM64 uses SPI to map MSIX, as it is not supporting ITS and LPI.

• FreeBSD ACPI did not had support for MBI ranges, and gicv3 driver only support

SPIs under FDT.

• In this course of work, gic_v3_acpi_attach() has been changed to address mbi start

and mbi end and to register with intr_msi_register().

©Microsoft Corporation

Azure

CHANGE in VMBUS_PCIB

• In Azure ARM64 HCI, PCI protocol version1.4 was required to communicate with

the host.

• New message structures were required to be supported by host side, for succesful

VF attachment.

• Also, in x86 nexus used to take care of msix allocation, release and mapping.

Those have changed here to use intr_alloc/intr_release/intr_map functions.

©Microsoft Corporation

Azure

Current performance

• This gives a performance boost on I/O by avoiding the synthetic devices,

and using Hyper-V DDA.

• As of today, the network performance of FreeBSD on Azure ARM64 per with Linux.

©Microsoft Corporation

Azure

Current upstream changes

©Microsoft Corporation

Azure

What is next…

• During provisioning on Azure, following issues were seen intermittently:
• panic: ram_attach: resource 7 failed to attach.
• The VM boots up fine for the first time. But the second boot with 'reboot' command in guest caused either panic or

filesystem inconsistency error.
• VM boot hangs with certain error in CAM layer when the VM has more than 4 synthetic nics
• VM boots up fine with ZFS root filesystem. But at certain stage it panic in certain ZFS routines.
• UFS checksum error when the data disk is UFS

©Microsoft Corporation

Azure

demo

©Microsoft Corporation

Azure

contd

©Microsoft Corporation

Azure

© Copyright Microsoft Corporation. All rights reserved.

Thank you.

	Slide 1: FreeBSD on Azure ARM64
	Slide 2: Introduction
	Slide 3: Preface
	Slide 4: Hyper-V driver in FreeBSD
	Slide 5: New Hyper-V driver layout
	Slide 6: Contd
	Slide 7: Use of ARM SMCCC HVC
	Slide 8: Hyper-v identify and LOAD
	Slide 9: EFI Serial console
	Slide 10: Hyper-V Vmbus
	Slide 11: VMBUS Interrupt handling
	Slide 12: Contd.
	Slide 13: vmbus pcib
	Slide 14: Enable SPI-MSIX mapping
	Slide 15: CHANGE in VMBUS_PCIB
	Slide 16: Current performance
	Slide 17: Current upstream changes
	Slide 18: What is next…
	Slide 19: demo
	Slide 20: contd
	Slide 21
	Slide 22: Thank you.

