
1 General information

Name: Marko Vlaić, email: marko.vlaic@fer.hr, mobile: +385916037618

1.1 Possible mentor

Bojan Novković

2 Project information

2.1 Project title

Zero-cost conditional execution mechanism

2.2 Project description

It is common for kernel subsystems to conditionally include functionality, based
on compile time and runtime configurations which are relatively infrequently
subject to change. Typical examples include: toggling of DTrace probes, boot-
time optimizations based on hardware capabilities and inclusion of additional
security checks. This is often done by examining the state of a global flag and
executing a block of code conditionally based on that state. When this is done
in a ”hot” (i.e. frequently executed) code path, the overhead of the conditional
execution can become significant. Moreover, in situations in which the state of
the inspected flags changes rarely, most of the performed checks are redundant.

The goal of this project is to design and implement a low overhead mechanism
for conditional execution in contexts in which the branching condition does not
change often. The main idea is to replace the check of a flag containing a false

value with a machine nop instruction. When the flag value is toggled to true

the nop instruction is patched at runtime to an unconditional jump instruction,
changing the execution flow to the conditionally executed block. An inverse
procedure is performed when the flag value is toggled back to false. This way
we make branch selection as cheap as we can, but in return we sacrifice addi-
tional time when changing the state of the flag.
Another consideration to make is that this kind of kernel code patching at
runtime can have a negative impact on security and correctness, in an SMP
environment. One processor trying to execute an instruction which is simul-
taneously being patched by another processor could cause a wrong or invalid
instruction to be executed.
As the mechanism is highly architecture dependent, this project will aim to
develop a strong implementation on the x86-64 architecture. Once the x86-64
implementation proves to be solid ports to other architectures will be made.
When invoked on non-supported architectures, the mechanism will fall back to
the traditional conditional branching approach.

1



The final goal of the project is to thoroughly test and benchmark the mecha-
nism. First, an artificial benchmark scenario will be created (alternatively an
existing one may be selected). The last step will be to apply the mechanism to
an already existing portion of kernel code. This will be done for the purposes
of demonstration as well as benchmarking in a realistic scenario.

A similar feature exists in the Linux kernel, and is accessible through the
static_keys api[1], where it proved to have a measurable impact on perfor-
mance. This will serve as a good source of inspiration, when it comes to imple-
mentation details.

2.3 Deliverables

1. A patch implementing the code patching and static branching mechanism
for the x86-64 architecture.

2. A patch which applies the developed mechanism to an existing piece of
kernel code.

2.4 Tentative implementation plan

2.4.1 Interface description

The proposed mechanism aims to improve performance of code blocks of form
shown in Listing 1, with minimal intervention into existing code.

i f ( f l a g ) {
<cond i t i on t rue body>

}
<r e s t o f the funct ion>

Listing 1: Target code form

We propose an interface consisting of the elements listed in Table 1.
With these in mind the code in Listing 1 can adopt the new mechanism with

little effort, as shown in Listing 2.

// somewhere in the g l oba l scope
DEFINE STATIC FLAG TRUE( f l a g ) ;
. . .
i f ( s t a t i c f l a g t r u e (& f l a g ) ) {

<cond i t i on t rue body>
}

Listing 2: Converted code

2



Element Description
struct static_flag A structure which holds the state

and ancillary data of a single flag
which supports the low cost branch-
ing mechanism

DEFINE_STATIC_FLAG_TRUE(fname) A macro which declares and initial-
izes struct static_flag fname

with a true value
DEFINE_STATIC_FLAG_FALSE(fname) A macro which declares and initial-

izes struct static_flag fname

with a false value
bool static_flag_true(struct static_flag* fp) A function which returns true if the

flag pointed to by fp is set to true

bool static_flag_false(struct static_flag* fp) A function which returns true if the
flag pointed to by fp is set to false

void static_flag_enable(struct static_flag* fp) A function which sets the state of
the flag pointed to by fp to true

and code patches the appropriate in-
structions accordingly

void static_flag_disable(struct static_flag* fp) A function which sets the state of
the flag pointed to by fp to false

and code patches the appropriate in-
structions accordingly

Table 1: Elements of the static flags interface

2.4.2 Static branch selection

The code listed in Listing 1 can be expected to compile to a sequence of machine
code instructions similar to the one shown in Listing 3 (on an x86-64 platform).

. . .
mov <f l a g >, %eax
t e s t %eax , %eax
j e < f a l s e l a b e l >
<cond i t i on t rue body i n s t r u c t i o n s>

f a l s e l a b e l :
<r e s t o f the i n s t r u c t i o n s>

Listing 3: Target machine code

A single block of this kind introduces negligible overhead, in the general case.
However when found in a ”hot” code path, when the memory caches are under
pressure or when there is a large number of these kind of checks the performance
penalty they bring can become (somewhat) significant.
To reduce this cost we choose the branch direction statically. To begin with,
assume the value of flag is initially set to true. We choose the true branch
by transforming the instruction sequence in Listing 3 to the one in Listing 4.

3



. . .
nop
<cond i t i on t rue body i n s t r u c t i o n s>

f a l s e l a b e l :
<r e s t o f the i n s t r u c t i o n s>

Listing 4: Statically selected true branch

The instructions dedicated to loading the flag from memory and checking its
state are replaced by a single nop instruction. This saves one memory access
and the memory required to store two instructions.
Later on, when the state of the flag changes to false, the instruction sequence
in Listing 4 gets patched to the one in Listing 5.

. . .
jmp < f a l s e l a b e l >
<cond i t i on t rue body i n s t r u c t i o n s>

f a l s e l a b e l :
<r e s t o f the i n s t r u c t i o n s>

Listing 5: Statically selected false branch

Here the nop instruction got patched to an unconditional jump.
The assembly code of the actual implementation might differ slightly from the
one displayed for the purposes of this discussion, in order to support the inter-
face as defined in Section 2.4.1 (mainly because of the return types of functions
static_flag_true and static_flag_false being bool); still no memory ac-
cess will be required.

2.4.3 Storing locations to be patched

A single struct static_flag can, in general, have an arbitrary number of
branches inspecting its state to determine the branch direction. We will name
code locations at which this occurs inspection points. In order to keep track
of all inspection points associated with a flag, a new ELF section, named
__jump_table will be created. Each entry in the __jump_table describes a
single inspection point. An inspection point entry holds the following data: ad-
dress of the instruction to be patched, address of the label to jump to when the
true branch is not selected and a pointer to the struct static_flag the entry
is associated with.
To make this possible, we will leverage a gcc feature enabling the asm goto

statement[2], introduced specifically for use cases of this type. The asm goto

statement lets inline assembly statements reference C labels. Listing 6 shows
a snippet which adds an entry to the __jump_table, where the instruction to be
patched is a nop. Variations of this snippet would be placed into static_flag_true
and static_flag_false functions to add appropriate inspection points when
they are invoked.

4



asm goto (
” 1 : ”
”nop\n\ t ”
” . pushsec t i on jump tab le , \”aw\” \n\ t ”
” . long 1b \n\ t ”
” . long %l [ l a b e l f a l s e ] \n\ t ”
” . long %c0 \n\ t ”
: : ” i ” ( f l a g p t r ) : : l a b e l f a l s e ) ;

Listing 6: Adds inspection point to the jump table

Finally, the __jump_table section will need to be added to the appropriate
/sys/conf/ldscript.amd64 linker script.

2.4.4 Patching the code

On kernel, or module, load each defined struct static_flag instance will be
populated with a list of its associated inspection points. When the state of
a struct static_flag instance is toggled via the static_flag_enable and
static_flag_disable functions, each of those inspection points will need to
be patched accordingly.
To perform the patching safely, we will have to make sure the processor per-
forming the patch has exclusive access to the page in which the instruction
is located; otherwise we risk many processor accessing the changing data, one
patching it and one trying to execute it for example, which could result in all
sorts of bad behaviour. Possible ways of granting exclusive access would be some
sort of locking or temporarily stopping execution on other CPUs by dispatching
inter-processor interrupts.

2.4.5 Testing the mechanism

Once developed, the mechanism will first have to be tested for correctness. A
test suite will be developed in order to ensure the behaviour of code with and
without the mechanism is the same, in as many scenarios as possible.
The code will then have to be benchmarked to measure the performance gain.
The first step will be to develop an artificial benchmark, full of code blocks
resembling the one in Listing 1. This will give us the idea of a possible speedup,
in an ideal scenario.
The last step will be to find an appropriate patch of kernel code in which the
mechanism will then be applied. This way we will be able to see if there is any
real benefit of introducing this interface into existing kernel code.

2.5 Project schedule

If possible, I would like to start working ahead of the official schedule, to com-
pensate for the time lost during my final exam season (June 17. - July 1.). If
this is not possible, I would like to apply for the extended coding period.

5



2.5.1 May 6. - May 12.

• Set up the development environment

• Revise the implementation plan with my mentor

• Consider the interface from a user point of view and make any needed
changes

• Think about the way to split code into high-level and architecture-specific

2.5.2 May 13. - May 19.

• Start working on the static branch selection

• Implement the DEFINE_STATIC_FLAG() macro

• Develop a proof of concept code block with asm goto

2.5.3 May 20. - May 26.

• Continue working on the static branch selection

• Implement the static_flag_true() and static_flag_false() func-
tions

2.5.4 May 27. - June 2.

• Finish work on the static branch selection

• Perform some rudimentary testing

• Begin researching the mechanisms needed to support code patching

2.5.5 June 3. - June 9.

• Start working on the code patching

• Start work on the single-processor versions of void static_flag_enable()

and static_flag_disable() functions.

2.5.6 June 10. - June 16.

I would like to take this week to focus on studying for my exams.

2.5.7 June 17. - June 30.

Exam season

6



2.5.8 July 1. - July 7.

• finish working on the single-processor versions of void static_flag_enable()

and static_flag_disable() functions.

• start researching the locking mechansims needed for an SMP version of
the code patching mechansim

2.5.9 July 8. - July 14.

• Implement the SMP version of the code patching mechanism

2.5.10 July 15. - July 21.

• Implement the SMP version of the code patching mechanism

2.5.11 July 22. - July 28.

• Work out any remaining issues

• Benchmark the mechanism with an artificial test suite

• Start looking for kernel code suitable to be refactored to use the new
interface

2.5.12 July 29. - August 4.

• Study the existing kernel code selected for refactoring

• Rewrite the selected piece of the kernel

2.5.13 August 5. - August 11.

• Final code review with my mentor

• Code polishing and squashing any unforseen bugs

2.5.14 August 12. - August 25.

Two buffer weeks included in case any unexpected delays occur

2.6 Biography

I am a first year M.Sc. student at the Faculty of Electrical Engineering and
Computing in Zagreb, Croatia. I am currently trying to focus my attention
on systems programming and embedded systems. Unfortunately, I have little
experience with operating systems development and FreeBSD, apart from the
courses offered at my faculty. I would very much like that to chnage. I feel
comfortable reading and writing C code. I had little trouble reading the code of
some FreeBSD subsystems. I was also able to write some practice device drivers.

7



When it comes to relevant work experience, I worked at Ericsson Nikola Tesla
for about half a year as a C++ embedded developer.

2.7 Availability

I estimate that I will be able to set aside 20 hours a week in the weeks before the
final exam season at my faculty. With the beginning of July i plan on spending
about 40 hours per week until the end of the project. I will be available for the
whole of July, August and September if it is found to be necessary. I believe
that I will be able to finish the project inside of the planned schedule.

2.8 Future work (post-GSoC)

The goal of this project is to develop a foundation for a useful kernel utility.
If the benchmarks show performance improvements I would very much like to
continue working on the mechanism; the most important part of future work
being bringing support for other architectures. Furthermore, the scope of this
project will most likely not include support for the use of the mechanism in
kld modules. This is something i plan on changing, provided the mechanism is
proved useful.

3 References

References

[1] https://www.kernel.org/doc/Documentation/static-keys.txt

[2] https://gcc.gnu.org/legacy-ml/gcc-patches/2009-07/msg01556.html

8


	General information
	Possible mentor

	Project information
	Project title
	Project description
	Deliverables
	Tentative implementation plan
	Interface description
	Static branch selection
	Storing locations to be patched
	Patching the code
	Testing the mechanism

	Project schedule
	May 6. - May 12.
	May 13. - May 19.
	May 20. - May 26.
	May 27. - June 2.
	June 3. - June 9.
	June 10. - June 16.
	June 17. - June 30.
	July 1. - July 7.
	July 8. - July 14.
	July 15. - July 21.
	July 22. - July 28.
	July 29. - August 4.
	August 5. - August 11.
	August 12. - August 25.

	Biography
	Availability
	Future work (post-GSoC)

	References

